Journal of Solution Chemistry

, Volume 22, Issue 10, pp 859–872 | Cite as

The effect of high pressure on the ion pair equilibrium constant of alkali metal fluorides: A spectrophotometric study

  • Sriramoji Manohar
  • Gordon Atkinson
Article

Abstract

Bromophenol blue indicator was used in UV-visible spectrophotometric measurements to study ion association constants of alkali metal fluorides. The equilibrium constants for the ion pair formation of the alkali metal fluorides were determined as a function of ionic strength at one atmosphere pressure and 25°C. The effect of pressure on these association constants was measured at a constant total ionic strength of 1.0 mol-kg−1 over a pressure range of 1 to 2000 atmospheres at 25°C. The pressure dependences of the stoichiometric association constants of the alkali metal fluorides are given by: lnK LiF * =0.77–2.47×10−4P−2.12×10−8P2; lnK NaF * =0.53–1.08×10−4P−1.66×10−8P2; lnK KF * =0.24–4.41×10−5P−7.15×10−8P2; lnK RbF * =−0.17–8.65×10−5P−4.51×10−8P2; and lnK CsF * = −0.37–1.14×10−4P−6.82×10−8P2, where P is the pressure in atmospheres. The stoichiometric molar volume and compressibility changes for ion pair formation of the alkali metal fluorides were evaluated from the pressure dependence of K MF * data. The thermodynamic association constants were also calculated making use of activity coefficient data from the Pitzer equations. The partial molal volume and compressibility changes for ion pair formation of each alkali metal fluoride are reported.

Key Words

Alkali metal fluoride stoichiometric association constants partial molal volume and compressibility changes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Usha and G. Atkinson,J. Solution Chem. 21, 477 (1992).Google Scholar
  2. 2.
    D. A. Lown, H. R. Thirsk, and L. Wynne-Jones,Trans. Faraday Soc. 64, 2073 (1968).Google Scholar
  3. 3.
    L. M. Rowe, L. B. Tran, and G. Atkinson,J. Solution Chem. 18, 675 (1989).Google Scholar
  4. 4.
    L. M. Rowe and G. Atkinson,J. Solution Chem. 19, 149 (1990).Google Scholar
  5. 5.
    F. W. Sweeton, R. E. Mesmer, and C. F. Baes, Jr.,J. Solution Chem. 3, 191 (1974).Google Scholar
  6. 6.
    F. J. Millero, E. V. Hoff, and L. Kahn,J. Solution Chem. 1, 309 (1972).Google Scholar
  7. 7.
    H. Corti, R. Crovetto, and R. Fernandez-Prini,J. Solution Chem. 8, 897 (1979).Google Scholar
  8. 8.
    A. D. Pethybridge and D. J. Spiers,J. Chem. Soc. Faraday Trans. I 73, 768 (1977).Google Scholar
  9. 9.
    K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).Google Scholar
  10. 10.
    D. J. Bradley and K. S. Pitzer,J. Phys. Chem. 83, 1599 (1979).Google Scholar
  11. 11.
    Critical Stability Constants, Vol. 4, R. M. Smith and A. E. Martell, eds., (Plenum, New York, 1976).Google Scholar
  12. 12.
    R. A. Robinson and H. S. Harned,Electrolyte Solutions, (Butterworths, London, 1959), p. 455.Google Scholar
  13. 13.
    C. F. Baes and R. E. Mesmer,The Hydrolysis of Cations (Wiley, New York, 1976), p. 403.Google Scholar
  14. 14.
    R. D. Shannon and C. T. Prewitt,Acta Cryst. B 25, 925 (1969).Google Scholar
  15. 15.
    W. L. Masterton, H. Welles, J. H. Knox, and F. J. Millero,J. Solution Chem. 3, 91 (1974).Google Scholar
  16. 16.
    F. H. Fisher and A. P. Fox,J. Solution Chem. 7, 561 (1978).Google Scholar
  17. 17.
    F. J. Millero and W. L. Masterton,J. Phys. Chem. 78, 1287 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Sriramoji Manohar
    • 1
  • Gordon Atkinson
    • 1
  1. 1.Department of ChemistryUniversity of OklahomaNorman

Personalised recommendations