Skip to main content
Log in

Anomalies in the temperature dependence of the 1.2-μ absorption of liquid water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The weakly absorbed 1.2-μ combination band of water was accurately studied as a function of temperature, in both its profile and first derivative, to obtain information on the bulk properties of liquid water. Arrhenius plots of integrated component intensity ratios showed well aligned experimental points, except for a neatly defined break occurring in the 30 to 40°C temperature interval for pure water A similar break, shifted by some 18°C towards lower temperature, was found in the case of 1M NaClO4 aqueous solutions. The breaks are tentatively assumed to result from abrupt though subtle changes involving low-frequency modes. This tentative, assumption appears independent of specific models and assignments and, although in agreement with available neutron-scattering and NMR data, needs more direct verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Eisenberg and W. Kauzmann,The Structure and Properties of Water (Oxford University Press, Oxford, 1969).

    Google Scholar 

  2. G. Némethy,Ann. Ist. Sup. Sanità Roma 6, 491 (1970) (in English).

    Google Scholar 

  3. Water and Aqueous Solutions, R. A. Horne, ed. (Wiley-Interscience, New York, 1972).

    Google Scholar 

  4. Water—A Comprehensive Treatise, Vol. 1, F. Franks, ed. (Plenum Press, New York, 1972).

    Google Scholar 

  5. H. S. Frank,Science 169, 635 (1970);Water—A Comprehensive Treatise, Vol. 1, F. Franks, ed. (Plenum Press, New York., 1972), p. 515.

    Google Scholar 

  6. A. T. Hagler, H. A. Scheraga, and G. Némethy,J. Phys. Chem. 76, 3229 (1972).

    Google Scholar 

  7. H. H. Landolt and R. Börnstein,Zahlenworte und Funktionen (Springer-Verlag, Berlin, 1951), Band I, Teil 2, S. 333.

    Google Scholar 

  8. K. Buijs and G. R. Choppin,J. Chem. Phys. 39, 2035 (1963);39, 2042 (1963);40, 3120 (1964).

    Google Scholar 

  9. W. A. P. Luck,Ber. Bunsenges. Physik. Chem. 69, 626 (1965).

    Google Scholar 

  10. D. F. Hornig,J. Chem. Phys. 40, 3119 (1964).

    Google Scholar 

  11. M. Falk and T. E. Ford,Can. J. Chem. 44, 1699 (1966).

    Google Scholar 

  12. D. M. Dennison,Rev. Mod. Phys. 12, 175 (1940).

    Google Scholar 

  13. G. E. Walrafen,J. Chem. Phys. 44, 1546 (1966).

    Google Scholar 

  14. D. J. Hughes, H. Palevsky, W. Kley, and E. Tunkelo,Phys. Rev. 119, 872 (1960).

    Google Scholar 

  15. E. Forslind,Quart. Rev. Biophys. 4, 325 (1971).

    Google Scholar 

  16. G. E. Walrafen,J. Chem. Phys. 52, 4176 (1970).

    Google Scholar 

  17. C. Cusumano and G. J. Troup,Phys. Letters 44A, 441 (1973);45A, 283 (1973).2

    Google Scholar 

  18. R. C. Gordon,J. Chem. Phys. 43, 1307 (1965).3

    Google Scholar 

  19. F. Vaslow,J. Chem. Phys. 70, 2286 (1966).

    Google Scholar 

  20. V. Vand and W. A. Senior,J. Chem. Phys. 43, 1878 (1965).

    Google Scholar 

  21. A. S. Quist and H. S. Frank,J. Chem. Phys. 34, 604 (1961).

    Google Scholar 

  22. P. V. Blanckenhagen,Ber. Bunsenges. Physik. Chem. 76, 891 (1972).

    Google Scholar 

  23. J. H. Simpson and H. Y. Carr,Phys. Rev. 111, 1201 (1958).

    Google Scholar 

  24. J. C. Hindman,J. Chem. Phys. 44, 4582 (1966).

    Google Scholar 

  25. K. Krynicki,Physica 32, 167 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andaloro, G., Palma-Vittorelli, M.B. & Palma, M.U. Anomalies in the temperature dependence of the 1.2-μ absorption of liquid water. J Solution Chem 4, 215–224 (1975). https://doi.org/10.1007/BF00646558

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646558

Key words

Navigation