Skip to main content
Log in

Vibrational spectral studies of solutions at elevated temperatures and pressures. IX. Acetic acid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Raman spectra of glacial acetic acid from 350 to 3700 cm−1 have been measured at temperatures up to 275°C and at a pressure of 9 MPa. Raman spectra of aqueous solutions of acetic acid from 3.9 to 16 molar have been measured up to 200°C at a pressure of 7 MPa. The spectral region 800 to 1850 cm−1 for both glacial acetic acid and its aqueous solutions have been studied in detail since this region is significantly affected by variations in temperature and concentration. An interpretation of the bands in this spectral region was made with the aid of factor analysis, difference spectroscopy, band resolution techniques and the existing extensive literature. The results suggest that the major equilibrium in glacial acetic acid is between cyclic and linear dimers; however, in aqueous solutions in the concentration range studied, mono- and di-hydrated dimers and cyclic dimers are the predominant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Byres and G. B. Gockley,Organic Impurity Transport in PWR Secondary Systems, EPRI report NP-4099, 1985.

  2. O. Weres and L. Tsao,Phase Relations and Fluid Compositions in Steam Generator Crevices, EPRI report NP-5138, 1987.

  3. R. E. Jones and D. H. Templeton,Acta Cryst. 11, 484 (1958).

    Google Scholar 

  4. J. Karle and L. O. Brockway,J. Am. Chem. Soc. 66, 574 (1944).

    Google Scholar 

  5. N. I. Gulivets, A. E. Lutskii, and I. V. Radchenko,J. Structural Chem. 6, 20 (1965).

    Google Scholar 

  6. M. M. Davies and G. B. B. M. Sutherland,J. Chem. Phys. 6, 755 (1938).

    Google Scholar 

  7. H. N. Farrer and F. J. C. Rossotti,Acta Chem. Scand. 17, 1824 (1963).

    Google Scholar 

  8. G. R. Nash and C. B. Monk,J. Chem. Soc. 4274 (1957).

  9. L. Barcaza and K. Mihalyi,Z. Physik. Chem. N. S. 104, 199 (1977).

    Google Scholar 

  10. D. R. Cartwright and C. B. Monk,J. Chem. Soc. 2500 (1955).

  11. A. Katchalsky, H. Eisenberg, and S. Lifson,J. Am. Chem. Soc. 73, 5889 (1951).

    Google Scholar 

  12. K. Suzuki, Y. Taniguchi, and T. Watanabe,J. Phys. Chem. 77, 1918 (1973).

    Google Scholar 

  13. E. Freedman,J. Chem. Phys. 21, 1784 (1953).

    Google Scholar 

  14. J. R. Freeman and G. M. Wilson, AIChE Symposium Series,81, 1 (1985).

    Google Scholar 

  15. R. D. Corsaro and G. Atkinson,J. Chem. Phys. 54, 4090 (1971).

    Google Scholar 

  16. G. E. Maciel and D. D. Trificante,J. Am. Chem. Soc. 88, 220 (1966).

    Google Scholar 

  17. J. H. Clark and J. Emsely,J. C. S. Dalton 2154 (1973).

  18. H. E. Affsprung, G. H. Findengg, and F. Kohler,J. Chem. Soc. (A) 1364 (1968).

  19. H. L. Ritter and J. H. Simons,J. Am. Chem. Soc. 67, 757 (1945).

    Google Scholar 

  20. W. Gordy,J. Chem. Phys. 5, 284 (1937).

    Google Scholar 

  21. E. L. Kinsey and J. W. Ellis,J. Chem. Phys. 5, 399 (1937).

    Google Scholar 

  22. R. H. Gillette and F. Daniels,J. Am. Chem. Soc. 58, 1139 (1936).

    Google Scholar 

  23. R. C. Herman and R. Hofstadter,J. Chem. Phys. 6, 534 (1938).

    Google Scholar 

  24. P. Koteswaram,J. Chem. Phys. 7, 88 (1939).

    Google Scholar 

  25. J. T. Edsall,J. Chem. Phys. 4, 1 (1936).

    Google Scholar 

  26. J. K. Wilmshurst,J. Chem. Phys. 25, 1171 (1956).

    Google Scholar 

  27. W. Weltner, Jr.,J. Am. Chem. Soc. 77, 3941 (1955).

    Google Scholar 

  28. M. Haurie and A. Novak,J. Chim. Phys. 62, 137, 146 (1965).

    Google Scholar 

  29. P. Traynard,Bull. Soc. Chim. 316 (1947).

  30. S. Feneant,C. R. Acad. Sci. Paris 235, 240 and 1292 (1952).

    Google Scholar 

  31. N. G. Zarakhani and M. L. Vinnik,Russ. J. Phys. Chem. 38, 332 (1964).

    Google Scholar 

  32. J. J. Kipling,J. Chem. Soc. 8, 2858 (1952).

    Google Scholar 

  33. J. B. Ng and H. F. Shurvell,Can. J. Spectrosc. 30, 149 (1985).

    Google Scholar 

  34. J. B. Ng and H. F. Shurvell,J. Phys. Chem. 91, 496 (1987).

    Google Scholar 

  35. D. E. Irish, T. Jarv, and C. I. Ratcliffe,Appl. Spectrosc. 36, 137 (1982).

    Google Scholar 

  36. J. Pitha and R. N. Jones,Can. J. Chem. 44, 3031 (1966).

    Google Scholar 

  37. E. R. Malinowski, Target 85 Programs, Lake Hiawatha, NJ (1985).

  38. K. Fukushima and B. J. Zwolinski,J. Chem. Phys. 50, 737 (1969).

    Google Scholar 

  39. L. W. Reeves and W. G. Schneider,Trans. Faraday Soc. 54, 314 (1958).

    Google Scholar 

  40. L. J. Bellamy, R. F. Lake, and R. J. Pace,Spectrochim. Acta 19, 443 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semmler, J., Irish, D.E. Vibrational spectral studies of solutions at elevated temperatures and pressures. IX. Acetic acid. J Solution Chem 17, 805–824 (1988). https://doi.org/10.1007/BF00646551

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646551

Key words

Navigation