Astrophysics and Space Science

, Volume 148, Issue 1, pp 149–161 | Cite as

Slow rotation of radiating viscous-fluid Universe coupled with scalar field

  • Manihar Singh Koijam
Article

Abstract

Investigations are being made on slowly rotating models of radiating viscous fluid coupled with scalar field in spherically-symmetric Einstein Universe, and some new analytic solutions are found to substantiate the possibility of the existence of such universes. The nature and role of the rotational velocity Ω(r, t) which is related to the local dragging of inertial frames and that of matter rotation ω(r, t) are studied. We also discuss the effects of the radiation field and the scalar field on the rotation. Rotating models which are expanding are obtained, where in all the cases the rotational velocities are found to decay with the time; and these models may be taken as good examples of real astrophysical situations.

Keywords

Radiation Scalar Field Radiation Field Rotational Velocity Viscous Fluid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. C., Adler, R. J., Cohen, J. M., and Sheffield, C.: 1974,Astrophys. J. 192, 525.Google Scholar
  2. Adams, R. C., Cohen, J. M., Adler, R. J., and Sheffield, C.: 1973,Phys. Rev. D 8, 1651.Google Scholar
  3. Bayin, S. S.: 1981,Phys. Rev. D24, 2056.Google Scholar
  4. Bayin, S. S.: 1983,Phys. Rev. D27, 3030.Google Scholar
  5. Bayin, S. S.: 1985,Can. J. Phys. 63, 1320.Google Scholar
  6. Bayin, S. S. and Cooperstock, F. I.: 1980,Phys. Rev. D22, 2317.Google Scholar
  7. Bietenholz, M. F. and Kronberg, P. P.: 1984,Astrophys. J. 287, L1.Google Scholar
  8. Birch, P.: 1982,Nature 298, 451.Google Scholar
  9. Hartle, J. B.: 1967,Astrophys. J. 150, 1005.Google Scholar
  10. Hawking, S.: 1969,Monthly Notices Roy. Astron. Soc. 142, 129.Google Scholar
  11. Heller, M.: 1975,Acta Cosmograph Z3, 97.Google Scholar
  12. Islam, J. N.: 1985,Rotating Fields in General Relativity, Cambridge Univ. Press, Cambridge.Google Scholar
  13. Kaminisi, K., Arai, K., and Tukamoto, M.: 1977,Phys. Rep. Kumamoto Univ. 3(1), 33.Google Scholar
  14. Kerr, R. P.: 1963,Phys. Rev. Letters 11, 237.Google Scholar
  15. Koijam, M. S.: 1988,Astrophys. Space Sci. (in press).Google Scholar
  16. Koijam, M. S. and Bhamra, K. S.: 1986,Pramana J. Phys. 26, 117.Google Scholar
  17. Koijam, M. S. and Bhamra, K. S.: 1987,Int. J. Theor. Phys. 26, 175.Google Scholar
  18. Krasinski, A.: 1978,Acta Cosmograph Z7, 119.Google Scholar
  19. Krori, K. D., Sarmah, J. C., and Goswami, D.: 1983,Can. J. Phys. 61, 744.Google Scholar
  20. Sisteró, R. F.: 1983,Astrophys. Letters 23, 235.Google Scholar
  21. Tiwari, R. N., Rao, J. R., and Kanakamedala, R. R.: 1986,Phys. Rev. D34, 327.Google Scholar
  22. Vaidya, P. C.: 1966,Astrophys. J. 144, 943.Google Scholar
  23. Van den Bergh, N. and Wils, P.: 1984, in W. B. Bonnor et al. (eds.), ‘Charged Rotating Dust in General Relativity’, Cambridge Univ. Press, Cambridge.Google Scholar
  24. Whitman, P. G.: 1984,Class. Quantum Gravit. 1, 319.Google Scholar
  25. Whitman, P. G.: 1985,Phys. Rev. D32, 1857.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Manihar Singh Koijam
    • 1
  1. 1.Department of MathematicsManipur UniversityImphalIndia

Personalised recommendations