Skip to main content
Log in

Volumes and heat capacities of some watersurfactant-alcohol ternary systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The densities and volumetric heat capacities of urea and alcohols were measured in aqueous solutions of octylammonium bromide (OABr) and of OABr in aqueous urea and alcohol solutions. The alcohols studies were methanol, ethanol, 1-propanol, 2-propanol, n-butanol, t-butanol, n-pentanol, n-hexanol and 2-butoxyethanol (BE). In most experiments, the concentration of the reference solute was kept low, and volumes and heat capacities of transfer from water to the mixed solvent were calculated. A more complete study was made with the system BE-OABr-H2O where both solutes were systematically changed. The observed trends in the thermodynamic functions can be explained through three effects: interactions between the reference solute and the cosolvent in the premiceller region of the surfactant or pre-aggregation region of the alcohol, a distribution of the reference solute between water and the micelle or microphase and an equilibrium displacement of the system, monomer-aggregate, in the vicinity of the reference solute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Prince, ed.Microemulsions: Theory and Practice, (Academic Press, New York, 1977).

    Google Scholar 

  2. I. D. Robb,Microemulsions, (Plenum Press, New York, 1982).

    Google Scholar 

  3. M. Bavière, W. H. Wade, and R. S. Schechten,C. R. Acad. Sci. Paris C289, 391 (1979).

    Google Scholar 

  4. H. N. Singh and S. Swarup,Bull. Chem. Soc. Japan 51, 1534 (1978).

    Google Scholar 

  5. K. Hayase and S. Hayano,Bull. Chem. Soc. Japan 51, 933 (1978);J. Coll. Interf. Sci. 63, 446 (1978).

    Google Scholar 

  6. M. Manabe and M. Koda,Bull. Chem. Soc. Japan 51, 1599 (1978).

    Google Scholar 

  7. K. Shinoda,J. Phys. Chem. 58, 1136 (1954).

    Google Scholar 

  8. D. Oakenfull,J. Coll. Interf. Sci. 88, 562 (1982).

    Google Scholar 

  9. G. D. Parfitt and J. A. Wood,Kolloid-Z. Z-Polymere 229, 55 (1969).

    Google Scholar 

  10. K. S. Birdi, S. Backlund, K. Sorensen, T. Krag, and S. Dalsager,J. Coll. Interf. Sci. 66, 118 (1978).

    Google Scholar 

  11. P. Lianos and R. Zana,Chem. Phys. Let. 72, 171 (1980);76, 62 (1980).

    Google Scholar 

  12. J. W. Larsen and L. B. Tepley,J. Coll. Interf. Sci. 49, 113 (1974).

    Google Scholar 

  13. T. Tominaga, T. B. Stem Jr., and D. F. Evans,Bull. Chem. Soc. Japan 53, 795 (1980).

    Google Scholar 

  14. D. E. Guveli, J. B. Kayes, and S. S. Davis,J. Coll. Interf. Sci. 72, 130 (1979).

    Google Scholar 

  15. H. N. Singh, S. Singh, and D. S. Mahalwar,J. Coll. Interf. Sci. 59, 386 (1977).

    Google Scholar 

  16. D. E. Guveli,J. Chem. Soc. Faraday Trans. I, 1377 (1981).

    Google Scholar 

  17. S. Kaneshima, M. Manabe, G. Sygihara, and M. Tanaka,Bull. Chem. Soc. Japan 49, 876 (1976).

    Google Scholar 

  18. E. Vikingstad,J. Coll. Interf. Sci. 72, 75 (1979).

    Google Scholar 

  19. E. Vikingstad and O. Kvammen,J. Coll. Interf. Sci. 74, 16 (1980).

    Google Scholar 

  20. K. W. Herrmann and L. Benjamin,J. Coll. Interf. Sci. 23, 478 (1967).

    Google Scholar 

  21. R. Bury and C. Treiner,J. Chem. Soc. Faraday Trans. 1, 1827 (1982).

    Google Scholar 

  22. R. L. Berg, L. A. Noll, and W. D. Good,American Chemical Society, Symp. Ser. 91, 87 (1979).

    Google Scholar 

  23. W. D. Harkins, R. W. Mattoon, and R. Mittelman,J. Chem. Phys. 15, 763 (1947).

    Google Scholar 

  24. M. F. Emerson and A. Holtzer,J. Phys. Chem. 71, 3320 (1967).

    Google Scholar 

  25. H. Nakayama, K. Shinoda, and E. Hutchinson,J. Phys. Chem. 70, 3502 (1966).

    Google Scholar 

  26. R. Zana, S. Yiv, C. Strazielle, and P. Lianos,J. Coll. Interf. Sci. 80, 208 (1981).

    Google Scholar 

  27. S. Candau and R. Zana,J. Coll. Interf. Sci. 84, 206 (1981).

    Google Scholar 

  28. P. Lianos, J. Lang, C. Strazielle, and R. Zana,J. Phys. Chem. 86, 1019 (1982).

    Google Scholar 

  29. C. DeVisser, G. Perron, and J. E. Desnoyers,Can. J. Chem. 55, 856 (1977).

    Google Scholar 

  30. G. Roux, G. Perron, and J. E. Desnoyers,J. Solution Chem. 7, 639 (1978).

    Google Scholar 

  31. G. Roux, D. Roberts, G. Perron, and J. E. Desnoyers,J. Solution Chem. 9, 629 (1980).

    Google Scholar 

  32. P.-A. Leduc, J.-L. Fortier, and J. E. Desnoyers,J. Phys. Chem. 78, 1217 (1974).

    Google Scholar 

  33. J. E. Desnoyers, R. DeLisi, and G. Perron,Pure Appl. Chem. 52, 433 (1980).

    Google Scholar 

  34. R. DeLisi, G. Perron, and J. E. Desnoyers,Can. J. Chem. 58, 959 (1980).

    Google Scholar 

  35. G. Perron, R. DeLisi, I. Davidson, S. Généreux, and J. E. Desnoyers,J. Coll. Interf. Sci. 79, 432 (1981).

    Google Scholar 

  36. G. Roux-Desgranges, A. H. Roux, J. P. Grolier, and A. Viallard,J. Solution Chem. 11, 357 (1982).

    Google Scholar 

  37. V. Mayer, A. H. Roux, G. Roux-Desgranges, and A. Viallard,Can. J. Chem. 61, 139 (1983).

    Google Scholar 

  38. J. E. Desnoyers, F. Quirion, D. Hétu, and G. Perron,Can. J. Chem. Eng. (in press).

  39. L. Avédikian, G. Perron, and J. E. Desnoyers,J. Solution Chem. 4, 331 (1975).

    Google Scholar 

  40. J. Lara, L. Avédikian, G. Perron, and J. E. Desnoyers,J. Solution Chem. 10, 301 (1981).

    Google Scholar 

  41. C. Jolicoeur and G. Lacroix,Can. J. Chem. 54, 624 (1976).

    Google Scholar 

  42. G. Perron, N. Desrosiers, and J. E. Desnoyers,Can. J. Chem. 54, 2163 (1976).

    Google Scholar 

  43. D. Hétu, M. Sc. Thesis, Université de Sherbrooke, 1983.

  44. A. H. Roux, G. Roux-Desgranges, J.-P. Grolier, and A. Viallard,J. Coll. Interf. Sci. 84, 250 (1981).

    Google Scholar 

  45. G. Roux-Desgranges, A. H. Roux, J.-P. Grolier, and A. Viallard,J. Coll. Interf. Sci. 84, 536 (1981).

    Google Scholar 

  46. J. E. Desnoyers, G. Perron, J. P. Morel, and L. Avédikian, inPhysics and Chemistry of Aqueous Gas Solutions, W. A. Adams, ed. (Electrochemical Soc., Princeton, 1975), p. 172.

    Google Scholar 

  47. J. Lara, G. Perron, and J. E. Desnoyers,J. Phys. Chem. 85, 1600 (1981).

    Google Scholar 

  48. J. Lara, G. Perron, and J. E. Desnoyers,J. Solution Chem. 10, 301 (1981).

    Google Scholar 

  49. N. R. Choudhyry and J. C. Ahluwalia,J. Solution Chem. 11, 189 (1982).

    Google Scholar 

  50. G. Perron, D. Joly, J. E. Desnoyers, L. Avédikian, and J. P. Morel,Can. J. Chem. 56, 552 (1978).

    Google Scholar 

  51. J. E. Desnoyers,Pure Appl. Chem. 54, 1469 (1982).

    Google Scholar 

  52. A. H. Roux, D. Hétu, G. Perron, and J. E. Desnoyers,J. Solution Chem. (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desnoyers, J.E., Hétu, D. & Perron, G. Volumes and heat capacities of some watersurfactant-alcohol ternary systems. J Solution Chem 12, 427–447 (1983). https://doi.org/10.1007/BF00646395

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646395

Key words

Navigation