Skip to main content
Log in

Mutual diffusion coefficients of Nal-H2O and LiCl-H2O at 25°C from Rayleigh interferometry

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Volume-fixed mutual diffusion coefficients of aqueous NaI have been measured from low concentrations to 10.8 mol-(kg H2O)−1 (7.6 mol-dm−3), and those of LiCl up to 1.6 mol-(kg H2O)−1 (1.55 mol-dm−3), at 25°C using free-diffusion Rayleigh interferometry. The accuracy of these diffusion coefficients is 0.1−0.2%. LiCl-H2O has some of the lowest diffusion coefficients for alkali halides, whereas NaI-H2O has some of the highest. The significance of these differences is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Rard and D. G. Miller,J. Chem. Soc., Faraday Trans. 1 78, 887 (1982).

    Google Scholar 

  2. J. A. Rard and D. G. Miller,J. Solution Chem. 8, 701, 755 (1979).

    Google Scholar 

  3. J. A. Rard and D. G. Miller,J. Chem. Eng. Data 25, 211 (1980).

    Google Scholar 

  4. D. G. Miller, L. B. Eppstein, J. A. Rard, and J. G. Albright, unpublished MgCl2-H2O diffusion data.

  5. P. J. Dunlop and R. H. Stokes,J. Am. Chem. Soc. 73, 3456 (1951.

    Google Scholar 

  6. L. L. Makarov, Yu. G. Vlasov, and V. A. Azarko,Russ. J. Phys. Chem. (Engl. Trans.) 40, 609 (1966).

    Google Scholar 

  7. J. G. Albright and D. G. Miller,J. Phys. Chem. 76, 1853 (1972);79, 2061 (1975).

    Google Scholar 

  8. J. M. Creeth,J. Am. Chem. Soc. 77, 6428 (1955).

    Google Scholar 

  9. D. G. Miller, J. G. Albright, and J. A. Rard, Analysis of Rayleigh Interference Patterns from Binary Free-diffusion Systems when the Diffusion Coefficient and Refractive Index have, Respectively, C1/2 and C3/2 Terms and Higher Order Terms. Manuscript in preparation.

  10. G. P. Baxter and C. C. Wallace,J. Am. Chem. Soc. 38, 70 (1916).

    Google Scholar 

  11. A. F. Scott and W. R. Frazier,J. Phys. Chem. 31, 459 (1927).

    Google Scholar 

  12. R. E. Gibson and J. F. Kincaid,J. Am. Chem. Soc. 59, 25 (1937).

    Google Scholar 

  13. D. A. MacInnes and M. O. Dayhoff,J. Am. Chem. Soc. 74, 1017 (1952).

    Google Scholar 

  14. R. E. Robertson, S. E. Sugamori, R. Tse, and C.-Y. Wu,Can. J. Chem. 44, 487 (1966).

    Google Scholar 

  15. F. Vaslow,J. Phys. Chem. 73, 3745 (1969); original data available NAPS Document No. 00499.

    Google Scholar 

  16. J. E. Desnoyers, M. Arel, G. Perron, and C. Jolicoeur,J. Phys. Chem. 73, 3346 (1969).

    Google Scholar 

  17. A. E. Stearn,J. Am. Chem. Soc. 44, 670 (1922).

    Google Scholar 

  18. G. P. Baxter, A. C. Boylston, E. Mueller, N. H. Black, and P. B. Goode,J. Am. Chem. Soc. 33, 901 (1911).

    Google Scholar 

  19. P. A. Lasselle and J. G. Aston,J. Am. Chem. Soc. 55, 3067 (1933).

    Google Scholar 

  20. W. Geffcken,Z. Physik. Chem. (Leipzig) Abt. A., Bd.155, 1 (1931).

    Google Scholar 

  21. F. Vaslow,Oak Ridge National Laboratory Report No. TM-1438, (1966).

  22. H. Kohner,Z. Physik. Chem. (Leipzig) Abt. B, Bd.1, 427 (1928).

    Google Scholar 

  23. M. S. Stakhanova and V. A. Vasilev,Russ. J. Phys. Chem. (Engl. Trans.) 37, 839 (1963).

    Google Scholar 

  24. F. T. Gucker, D. Stubley, and D. J. Hill,J. Chem. Thermodyn. 9, 987 (1977).

    Google Scholar 

  25. W. H. Green,J. Chem. Soc. 93, 2023 (1908).

    Google Scholar 

  26. A. Sakhanov,Z. Elektrochem. 19, 588 (1913).

    Google Scholar 

  27. S. Palitzsch,Z. Phys. Chem. (Leipzig) Abt. A, Bd.138, 379 (1928).

    Google Scholar 

  28. G. Jones and B. C. Bradshaw,J. Am. Chem. Soc. 54, 138 (1932).

    Google Scholar 

  29. H. S. Harned and C. L. Hildreth, Jr.,J. Am. Chem. Soc. 73, 650 (1951).

    Google Scholar 

  30. P. J. Dunlop and L. G. Gosting,J. Am. Chem. Soc. 77, 5238 (1955).

    Google Scholar 

  31. V. Vitagliano,Gazz. Chim. Ital. 90, 876 (1960).

    Google Scholar 

  32. R. H. Stokes,J. Am. Chem. Soc. 72, 2243 (1950).

    Google Scholar 

  33. A. A. Ravdel', A. B. Porai-Koshits, A. M. Sazonov, and G. A. Shmuilovich,J. App. Chem. USSR (Eng. Trans.) 46, 1811 (1973).

    Google Scholar 

  34. D. G. Miller, ‘Electrolytes: Transport Properties and Non-equilibrium Thermodynamics’, inProceedings Second Australian Thermodynamics Conference, (Royal Australian Chemical Institute, Melbourne, 1981).

    Google Scholar 

  35. W. J. Hamer and Y.-C Wu,J. Phys. Chem. Ref. Data 1, 1047 (1972).

    Google Scholar 

  36. R. A. Robinson,J. Am. Chem. Soc. 57, 1161 (1935).

    Google Scholar 

  37. M. L. Miller and C. L. Sheridan,J. Phys. Chem. 60, 184 (1956).

    Google Scholar 

  38. G. Jakli and W. A. Van Hook,J. Chem. Eng. Data 17, 348 (1972).

    Google Scholar 

  39. H. S. Harned and S. M. Douglas,J. Am. Chem. Soc. 48, 3095 (1926).

    Google Scholar 

  40. V. I. Lebed' and V. V. Aleksandrov,Russ. J. Phys. Chem. (Engl. Trans.) 38, 1414 (1964).

    Google Scholar 

  41. R. L. Kay, D. F. Evans, and M. A. Matesich, ‘Evaluation of Ion-Solvent Interactions from Transport Properties’, inSolute-Solvent Interactions, J. F. Coetzee and C. D. Ritchie, eds., Vol. 2 (Marcel Dekker, New York, 1976), Chap. 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed under the auspices of Office of Basic Energy Science (Geosciences) of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rard, J.A., Miller, D.G. Mutual diffusion coefficients of Nal-H2O and LiCl-H2O at 25°C from Rayleigh interferometry. J Solution Chem 12, 413–425 (1983). https://doi.org/10.1007/BF00646394

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646394

Key words

Navigation