Skip to main content
Log in

Infrared study of anion-water interactions in dichloromethane

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The binding energy and number of anion-water interactions were investigated by infrared spectroscopy in aqueous CH2Cl2 solutions containing salts and cryptands. In these solutions the frequency of the bound OH vibration and the H-bond energy both correlate linearly (Badger-Bauer rule) and are of the same order of magnitude as those in water-organic H-bond acceptor systems. The frequency shift of the OH vibration and the H-bond energy both show an anion dependence which increases in the order:

$$ClO_4^ - {\text{ }}<< {\text{ NO}}_{\text{3}}^ - \lesssim I^ -< {\text{ SCN}}^ - {\text{ }}< {\text{ }}Cl^{ - {\text{ }}} \lesssim CO_3^2 {\text{ }} \lesssim F^ -$$

to 340 cm−1 and 17.2 kJ-mol−1 of H-bonds, respectively, when compared to H2O-CH2Cl2 interactions. Anion-water H-bond energies agree with the results of computer simulations and heats of hydration. This indicates that an H-bond may be regarded as an interaction between an acid H-atom and a partial charge-whether the H-bond acceptor is formally charged or not (anion or organic base). The magnitude of water-anion interaction energies show a similar order as is found for water interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Lehn,Acc. Chem. Res. 11, 49 (1978).

    Google Scholar 

  2. J.-M. Lehn,Pure Appl. Chem. 52, 2303 (1980).

    Google Scholar 

  3. E. Merck,Kryptofix, Information booklet of E. Merck, Darmstadt.

  4. P. Gans, J. B. Gill, and N. Tarning,J. Chem. Soc. Dalton Trans. 2202 (1977).

  5. Y. M. Cahen and A. I. Popov,J. Solution Chem. 4, 599 (1975).

    Google Scholar 

  6. J. Goulen,8th International Conference on Non-aqueous Solutions, Nantes, France, July 19–23, 1982.

  7. W. A. P. Luck,Progr. Colloid & Polymer Sci.,65, 6 (1978); in:Water in Polymers, S. P. Rowland, ed.,ACS Symposium Series 127, (American Chemical Society, Washington, 1980), p. 43.

    Google Scholar 

  8. M. C. R. Symons see Ref. 6.8th International Conference on Non-aqueous Solutions, Nantes, France, July 19–23, 1982.

  9. H. Kistenmacher, H. Popkie, and E. Clementi,J. Chem. Phys. 61, 799 (1974).

    Google Scholar 

  10. K. Heinzinger and P. C. Vogel,Z. Naturforsch. 29, 1164 (1979);,31, 463 (1976).

    Google Scholar 

  11. J. O. M. Bockris and A. K. N. Reddy,Modern Electrochemistry 1 (Plenum Press, New York, 1973).

    Google Scholar 

  12. J. Timmermanns,Physico-Chemical Constants of Pure Organic Compounds (Elsevier, New York, 1950), p. 215.

    Google Scholar 

  13. D. Schiöberg and W. A. P. Luck,J. Chem. Soc. Faraday Trans. I 75, 762 (1979).

    Google Scholar 

  14. W. A. P. Luck and D. SchiöbergAdv. Mol. Relaxation and Interaction Processes 14, 277 (1979).

    Google Scholar 

  15. S. C. Mohr, W. D. Wilk, and G. M. Barrow,J. Am. Chem. Soc. 87, 3048 (1965).

    Google Scholar 

  16. A. Allerhand and P. v. R. Schleyer,J. Am. Chem. Soc. 85, 1233 (1963).

    Google Scholar 

  17. W. A. P. Luck, inFlüssige Arzneiformen und Arzneimittelsicherheit, D. Essig et al., eds., (Wissenschaftl. Verlagsges., Stuttgart, 1981), p. 17.

    Google Scholar 

  18. W. A. P. Luck, inIntermolecular Forces Vol. 14, B. Pullman, ed., (D. Reidel, Dordrecht, 1981), p. 199.

    Google Scholar 

  19. W. A. P. Luck, inWater and Ions in Biological Systems, V. Visilescu, ed., (Plenum Press, in press).

  20. H. Kleeberg, Thesis, University of Marburg, in preparation; H. Kleeberg, see Ref. 18Intermolecular Forces, Vol. 14, B. Pullman, ed., (D. Reidel), Dordrecht, 1981), p. 465.

  21. H. Kleeberg, O. Kocak, and W. A. P. Luck,J. Solution Chem. 11, 611 (1982).

    Google Scholar 

  22. C. N. R. Rao P. C. Dwivedi, H. Ratajczak, and W. J. Orville-Thomas,J. Chem. Soc. Faraday Trans. II 955 (1975).

  23. A. Behrens and W. A. P. Luck,J. Mol. Struct. 60, 337 (1980); B. Mann,Ber. Bunsenges. Phys. Chem. 78, 1236 (1974).

    Google Scholar 

  24. W. A. P. Luck, inStructure of Water and Aqueous Solutions, W. A. P. Luck, ed., (Verlag Chemie, Weinheim, 1974), p. 221.

    Google Scholar 

  25. Gy. J. Szász, K. Heinzinger, and W. O. Riede,Z. Naturforsch. 369, 1067 (1981).

    Google Scholar 

  26. J. E. Enderby and G. W. Neilson, inWater: A Comprehensive Treatise, F. Franks, ed., Vol. 6, (Plenum Press, New York, 1979), p. 1.

    Google Scholar 

  27. I. D. Brown,Chem. Soc. Rev. 7, 359 (1978).

    Google Scholar 

  28. H. J. C. Berendsen, see Ref. 18, p. 331.

    Google Scholar 

  29. C. Buanam-Om, W. A. P. Luck, and D. Schioberg,Z. Phys. Chem. Neue Folge 117, 19 (1979).

    Google Scholar 

  30. J. M. Strauss and M. C. R. Symons,J. Chem. Soc. Faraday Trans. I 74, 2518 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleeberg, H., Luck, W.A.P. Infrared study of anion-water interactions in dichloromethane. J Solution Chem 12, 369–381 (1983). https://doi.org/10.1007/BF00646391

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646391

Key words

Navigation