Skip to main content
Log in

Application of a chemical equilibrium model to thermodynamic functions of transfer of alcohols from water to aqueous surfactants

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In ternary aqueous solutions, hydrophobic solutes such as alcohols tend to aggregate with surfactants to form mixed micelles. These systems can be studied by meas of the functions of transfer of hydrophobic solutes from water to aqueous solutions of surfactant. These thermodynamic functions often go through extrema in the critical micellar concentration (CMC) region of the surfactant. A simple model based on interactions between surfactant and hydrophobic solute monomers, on the distribution of the hydrophobic solute between water and the micelles and on the shift in the CMC induced by the hydrophobic solute, can simulate the magnitude and trends of the transfer functions using parameters which are mostly derived from the binary systems. In order to check the model more quantitatively, volumes and heat capacities of transfer of alcohols from water to aqueous solutions of a nonionic surfactant, octyldimethylamine oxide, were measured. A quantitative agreement was achieved with three adjustable parameters. Good fits are also obtained for the transfers to the ionic surfactants, octylamine hydrobromide and sodium dodecylsulfate. When the equilibrium displacement contribution is small, the distribution constants and the partial molar properties of the alcohols in the micellar phase agree well with the parameters obtained with similar models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phenomena in Mixed Surfactant Systems, J. F. Scamehorn ed., ACS Symposium series, No. 311 (1986).

  2. G. Perron, R. DeLisi, I. Davidson, S. Généreux, and J. E. Desnoyers,J. Coll. Interf. Sci. 79, 432 (1981).

    Google Scholar 

  3. J. Lara, G. Perron, and J. E. Desnoyers,J. Phys. Chem. 85, 1600 (1981).

    Google Scholar 

  4. J. Lara, L. Avedikian, G. Perron, and J. E. Desnoyers,J. Solution Chem. 10, 301 (1981).

    Google Scholar 

  5. J. E. Desnoyers, D. Hétu, and G. Perron,J. Solution Chem. 12, 427 (1983).

    Google Scholar 

  6. R. Bury and C. Treiner,J. Coll. Interf. Sci. 103, 1 (1985).

    Google Scholar 

  7. M. Manabe, S. Kikuchi, S. Katayama, S. Takunaga, and M. Koda,Bull. Chem. Soc. Jpn. 57, 2027 (1984).

    Google Scholar 

  8. V. Majer, A. H. Roux, G. Roux-Desgranges, and A. ViallardCan. J. Chem. 61, 139 (1983).

    Google Scholar 

  9. G. Roux-Desgranges, A. H. Roux, J.-P. E. Grolier, and A. Viallard,J. Solution Chem. 11, 357 (1982).

    Google Scholar 

  10. R. DeLisi, C., Genova, and V. T. Liveri,J. Coll. Interf. Sci. 95, 428 (1983).

    Google Scholar 

  11. R. DeLisi, C. Genova, R. Testa, and V. T. Liveri,J. Solution Chem. 13, 121 (1984).

    Google Scholar 

  12. F. Yamashita, G. Perron, J. E. Desnoyers, and J. C. T. Kwak, Ref. 1Phenomena in Mixed Surfactant Systems, J. F. Scamehorn ed., ACS Symposium series, No. 311 (1986) Chap. 6, p. 79.

  13. A. H. Roux, D. Hétu, G. Perron, and J. E. Desnoyers,J. Solution Chem. 13, 1 (1984).

    Google Scholar 

  14. S. D. Christian, E. E. Tucker, and E. H. Lane,J. Coll. Interf. Sci. 84, 423 (1981); see also E. E. Tucker and S. D. Christian,Faraday Symp. Chem. Soc. 17, 11 (1982).

    Google Scholar 

  15. R. DeLisi and V. T. Liveri,Gaz. Chim. Ital. 113, 371, (1983).

    Google Scholar 

  16. C. Treiner,J. Coll. Interf. Sci. 90, 444 (1982).

    Google Scholar 

  17. D. Hétu, A. H. Roux and J. E. Desnoyers,J. Coll. Interf. Sci., in press.

  18. J. E. Desnoyers, G. Caron, R. DeLisi, D. Roberts, A. Roux, and G. Perron,J. Phys. Chem. 87, 1397 (1983).

    Google Scholar 

  19. D. Hétu, M. Sc. Thesis, Sherbrooke (1981).

  20. P. Picker, E. Tremblay, and C. JolicoeurJ. Solution Chem. 3, 377 (1974).

    Google Scholar 

  21. L. Avédikian, G. Perron, and J. E. Desnoyers,J. Solution Chem. 4, 331 (1975).

    Google Scholar 

  22. P. Picker, P.-A. Leduc, P. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  23. H. Bahri and P. Letellier,J. Chim. Phys. 82, 803 (1985).

    Google Scholar 

  24. F. Yamashita, G. Perron, J. E. Desnoyers, and J. C. T. Kwak,J. Coll. Interf. Sci. 114, 548 (1986).

    Google Scholar 

  25. R. DeLisi, V. T. Liveri, M. Castagnolo, and A. Inglese,J. Solution Chem. 15, 23 (1986); see also R. DeLisi, A. Lezzio, S. Milioto, and V. T. Liveri,J. Solution Chem. 15, 623 (1986).

    Google Scholar 

  26. D. Hétu, Ph.D. Thesis, Sherbrooke, (1986).

  27. K. S. Birdi, S. Backlund, K. Sorenson, T. Krag, and S. Dalsager,J. Coll. Interf. Sci. 66, 118 (1978).

    Google Scholar 

  28. H. N. Singh, S. Singh, D. S. MahalwarJ. Coll. Interf. Sci. 59, 386 (1977).

    Google Scholar 

  29. G. Caron and J. E. Desnoyers,J. Coll. Interf. Sci., in press.

  30. K. Hayase and S. Hayano,Bull. Chem. Soc. Jpn. 50, 83 (1977).

    Google Scholar 

  31. M. Manabe, K. Sherahama, and M. Koda,Bull. Chem. Soc. Jpn. 49, 2904 (1976).

    Google Scholar 

  32. E. B. Abuin, E. Valenzuela, and E. A. Lissi,J. Coll. Interf. Sci. 101, 401 (1984);95, 198 (1983).

    Google Scholar 

  33. J. E. Desnoyers, D. Roberts, R. DeLisi, and G. Perron, inSolution Behavior of Surfactants, K. L. Mittal and E. J. Fendler ed., (Plenum, New York, 1982).

    Google Scholar 

  34. D. Hétu, A. H. Roux, G. Perron, and J. E. Desnoyers, in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetú, D., Roux, A.H. & Desnoyers, J.E. Application of a chemical equilibrium model to thermodynamic functions of transfer of alcohols from water to aqueous surfactants. J Solution Chem 16, 529–554 (1987). https://doi.org/10.1007/BF00646332

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646332

Key words

Navigation