Advertisement

Journal of Solution Chemistry

, Volume 16, Issue 7, pp 529–554 | Cite as

Application of a chemical equilibrium model to thermodynamic functions of transfer of alcohols from water to aqueous surfactants

  • Daniel Hetú
  • Alain H. Roux
  • Jacques E. Desnoyers
Article

Abstract

In ternary aqueous solutions, hydrophobic solutes such as alcohols tend to aggregate with surfactants to form mixed micelles. These systems can be studied by meas of the functions of transfer of hydrophobic solutes from water to aqueous solutions of surfactant. These thermodynamic functions often go through extrema in the critical micellar concentration (CMC) region of the surfactant. A simple model based on interactions between surfactant and hydrophobic solute monomers, on the distribution of the hydrophobic solute between water and the micelles and on the shift in the CMC induced by the hydrophobic solute, can simulate the magnitude and trends of the transfer functions using parameters which are mostly derived from the binary systems. In order to check the model more quantitatively, volumes and heat capacities of transfer of alcohols from water to aqueous solutions of a nonionic surfactant, octyldimethylamine oxide, were measured. A quantitative agreement was achieved with three adjustable parameters. Good fits are also obtained for the transfers to the ionic surfactants, octylamine hydrobromide and sodium dodecylsulfate. When the equilibrium displacement contribution is small, the distribution constants and the partial molar properties of the alcohols in the micellar phase agree well with the parameters obtained with similar models.

Key words

Mixed micelles surfactants alcohols thermodynamic transfer functions volume heat capacity hydrophobic solutes chemical equilibrium model and distribution constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Phenomena in Mixed Surfactant Systems, J. F. Scamehorn ed., ACS Symposium series, No. 311 (1986).Google Scholar
  2. 2.
    G. Perron, R. DeLisi, I. Davidson, S. Généreux, and J. E. Desnoyers,J. Coll. Interf. Sci. 79, 432 (1981).Google Scholar
  3. 3.
    J. Lara, G. Perron, and J. E. Desnoyers,J. Phys. Chem. 85, 1600 (1981).Google Scholar
  4. 4.
    J. Lara, L. Avedikian, G. Perron, and J. E. Desnoyers,J. Solution Chem. 10, 301 (1981).Google Scholar
  5. 5.
    J. E. Desnoyers, D. Hétu, and G. Perron,J. Solution Chem. 12, 427 (1983).Google Scholar
  6. 6.
    R. Bury and C. Treiner,J. Coll. Interf. Sci. 103, 1 (1985).Google Scholar
  7. 7.
    M. Manabe, S. Kikuchi, S. Katayama, S. Takunaga, and M. Koda,Bull. Chem. Soc. Jpn. 57, 2027 (1984).Google Scholar
  8. 8.
    V. Majer, A. H. Roux, G. Roux-Desgranges, and A. ViallardCan. J. Chem. 61, 139 (1983).Google Scholar
  9. 9.
    G. Roux-Desgranges, A. H. Roux, J.-P. E. Grolier, and A. Viallard,J. Solution Chem. 11, 357 (1982).Google Scholar
  10. 10.
    R. DeLisi, C., Genova, and V. T. Liveri,J. Coll. Interf. Sci. 95, 428 (1983).Google Scholar
  11. 11.
    R. DeLisi, C. Genova, R. Testa, and V. T. Liveri,J. Solution Chem. 13, 121 (1984).Google Scholar
  12. 12.
    F. Yamashita, G. Perron, J. E. Desnoyers, and J. C. T. Kwak, Ref. 1Phenomena in Mixed Surfactant Systems, J. F. Scamehorn ed., ACS Symposium series, No. 311 (1986) Chap. 6, p. 79.Google Scholar
  13. 13.
    A. H. Roux, D. Hétu, G. Perron, and J. E. Desnoyers,J. Solution Chem. 13, 1 (1984).Google Scholar
  14. 14.
    S. D. Christian, E. E. Tucker, and E. H. Lane,J. Coll. Interf. Sci. 84, 423 (1981); see also E. E. Tucker and S. D. Christian,Faraday Symp. Chem. Soc. 17, 11 (1982).Google Scholar
  15. 15.
    R. DeLisi and V. T. Liveri,Gaz. Chim. Ital. 113, 371, (1983).Google Scholar
  16. 16.
    C. Treiner,J. Coll. Interf. Sci. 90, 444 (1982).Google Scholar
  17. 17.
    D. Hétu, A. H. Roux and J. E. Desnoyers,J. Coll. Interf. Sci., in press.Google Scholar
  18. 18.
    J. E. Desnoyers, G. Caron, R. DeLisi, D. Roberts, A. Roux, and G. Perron,J. Phys. Chem. 87, 1397 (1983).Google Scholar
  19. 19.
    D. Hétu, M. Sc. Thesis, Sherbrooke (1981).Google Scholar
  20. 20.
    P. Picker, E. Tremblay, and C. JolicoeurJ. Solution Chem. 3, 377 (1974).Google Scholar
  21. 21.
    L. Avédikian, G. Perron, and J. E. Desnoyers,J. Solution Chem. 4, 331 (1975).Google Scholar
  22. 22.
    P. Picker, P.-A. Leduc, P. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).Google Scholar
  23. 23.
    H. Bahri and P. Letellier,J. Chim. Phys. 82, 803 (1985).Google Scholar
  24. 24.
    F. Yamashita, G. Perron, J. E. Desnoyers, and J. C. T. Kwak,J. Coll. Interf. Sci. 114, 548 (1986).Google Scholar
  25. 25.
    R. DeLisi, V. T. Liveri, M. Castagnolo, and A. Inglese,J. Solution Chem. 15, 23 (1986); see also R. DeLisi, A. Lezzio, S. Milioto, and V. T. Liveri,J. Solution Chem. 15, 623 (1986).Google Scholar
  26. 26.
    D. Hétu, Ph.D. Thesis, Sherbrooke, (1986).Google Scholar
  27. 27.
    K. S. Birdi, S. Backlund, K. Sorenson, T. Krag, and S. Dalsager,J. Coll. Interf. Sci. 66, 118 (1978).Google Scholar
  28. 28.
    H. N. Singh, S. Singh, D. S. MahalwarJ. Coll. Interf. Sci. 59, 386 (1977).Google Scholar
  29. 29.
    G. Caron and J. E. Desnoyers,J. Coll. Interf. Sci., in press.Google Scholar
  30. 30.
    K. Hayase and S. Hayano,Bull. Chem. Soc. Jpn. 50, 83 (1977).Google Scholar
  31. 31.
    M. Manabe, K. Sherahama, and M. Koda,Bull. Chem. Soc. Jpn. 49, 2904 (1976).Google Scholar
  32. 32.
    E. B. Abuin, E. Valenzuela, and E. A. Lissi,J. Coll. Interf. Sci. 101, 401 (1984);95, 198 (1983).Google Scholar
  33. 33.
    J. E. Desnoyers, D. Roberts, R. DeLisi, and G. Perron, inSolution Behavior of Surfactants, K. L. Mittal and E. J. Fendler ed., (Plenum, New York, 1982).Google Scholar
  34. 34.
    D. Hétu, A. H. Roux, G. Perron, and J. E. Desnoyers, in preparation.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Daniel Hetú
    • 1
  • Alain H. Roux
    • 2
  • Jacques E. Desnoyers
    • 3
  1. 1.INRS-EnergieVarennesCanada
  2. 2.Laboratoire de Thermodynamique et de Cinétique ChimiqueUniversité de Clermont-Ferrand 2AubièreFrance
  3. 3.Institut National de la Recherche ScientifiqueSainte-FoyCanada

Personalised recommendations