Skip to main content
Log in

Hydrodynamic approximation for distinct diffusion coefficients

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The distinct diffusion coefficient is a measure of the coupling of the diffusive motions of two particles. It is given as the integral over a velocity cross correlation rather than the velocity self correlation that determines the self-diffusion coefficient. A hydrodynamic approximation for the distinct diffusion coefficient is proposed and then tested by comparison with data for a wide range of non-ionic binary mixtures. The hydrodynamic approximation gives negative distinct diffusion coefficients and is in qualitative agreement with most of the data. In many cases, deviations from the model results can be explained in terms of interactions which are not accurately treated by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Hertz,Disc. Faraday Soc. 64, 349 (1977).

    Google Scholar 

  2. H. G. Hertz,Protons and Ions Involved in Fast Dynamical Phenomena, P. Laszlo, ed., (Elsevier, New York, 1978), p. 1.

    Google Scholar 

  3. H. G. Hertz,Ber. Bunsensges. Phys. Chem. 81, 656 (1977).

    Google Scholar 

  4. H. G. Hertz, K. R. Harris, R. Mills and L. A. Woolf,Ber. Bunsensges. Phys. Chem. 81, 664 (1977).

    Google Scholar 

  5. R. Mills and H. G. Hertz,J. Phys. Chem. 84, 220 (1980).

    Google Scholar 

  6. G. A. Geiger and H. G. Hertz,J. Chem. Soc., Faraday I 76, 135 (1980).

    Google Scholar 

  7. D. W. McCall and D. C. Douglass,J. Phys. Chem. 71, 987 (1967).

    Google Scholar 

  8. H. L. Friedman and R. Mills,J. Solution Chem. 10, 395 (1981).

    Google Scholar 

  9. L. A. Woolf and K. R. Harris,JCS Faraday I 74, 933 (1978). H. J. V. Tyrrell and K. R. Harris,Diffusion in Liquids, (Butterworth, London, 1985).

    Google Scholar 

  10. J. P. Hansen and I. R. McDonald,Statistical Mechanics of Simple Fluids, (Academic Press, New York, 1976).

    Google Scholar 

  11. H. L. Friedman,A Course in Statistical Mechanics, (Prentice-Hall, New York, 1985).

    Google Scholar 

  12. W. A. Steele,Transport Phenomena in Fluids, H. J. M. Hanley, ed., (Marcel Dekker, New York, 1969), pp. 230–249.

    Google Scholar 

  13. J. G. Kirkwood, R. L. Baldwin, P. J. Dunlop, L. J. Gosting, and G. Kegeles,J. Chem. Phys. 33, 1505 (1960).

    Google Scholar 

  14. D. F. Calef and J. M. Deutch,Ann. Rev. Phys. Chem. 34, 493 (1983).

    Google Scholar 

  15. A. R. Altenberger and H. L. Friedman,J. Chem. Phys. 78, 4162 (1983), Eqs. (4.8) and (4.14).

    Google Scholar 

  16. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolyte Solutions, 3rd edn., (Reinhold, New York, 1958), Chap. 4.

    Google Scholar 

  17. J. Happel and H. Brenner,Low Reynolds Number Hydrodynamics, (Prentice-Hall, Englewood Cliffs, 1965) Chaps. 6 and 8.

    Google Scholar 

  18. B. U. Felderhof,J. Phys. A. 11, 929 (1978).

    Google Scholar 

  19. O. Steinhauser,Chemical Physics 73, 155 (1982).

    Google Scholar 

  20. J. G. Kirkwood and F. P. Buff,J. Phys. Chem. 19, 774 (1951).

    Google Scholar 

  21. References for the data used to calculate the coefficients in Table I may be obtained from the second author (R. M.).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, H.L., Mills, R. Hydrodynamic approximation for distinct diffusion coefficients. J Solution Chem 15, 69–80 (1986). https://doi.org/10.1007/BF00646311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646311

Key words

Navigation