Abstract
The distinct diffusion coefficient is a measure of the coupling of the diffusive motions of two particles. It is given as the integral over a velocity cross correlation rather than the velocity self correlation that determines the self-diffusion coefficient. A hydrodynamic approximation for the distinct diffusion coefficient is proposed and then tested by comparison with data for a wide range of non-ionic binary mixtures. The hydrodynamic approximation gives negative distinct diffusion coefficients and is in qualitative agreement with most of the data. In many cases, deviations from the model results can be explained in terms of interactions which are not accurately treated by the model.
Similar content being viewed by others
References
H. G. Hertz,Disc. Faraday Soc. 64, 349 (1977).
H. G. Hertz,Protons and Ions Involved in Fast Dynamical Phenomena, P. Laszlo, ed., (Elsevier, New York, 1978), p. 1.
H. G. Hertz,Ber. Bunsensges. Phys. Chem. 81, 656 (1977).
H. G. Hertz, K. R. Harris, R. Mills and L. A. Woolf,Ber. Bunsensges. Phys. Chem. 81, 664 (1977).
R. Mills and H. G. Hertz,J. Phys. Chem. 84, 220 (1980).
G. A. Geiger and H. G. Hertz,J. Chem. Soc., Faraday I 76, 135 (1980).
D. W. McCall and D. C. Douglass,J. Phys. Chem. 71, 987 (1967).
H. L. Friedman and R. Mills,J. Solution Chem. 10, 395 (1981).
L. A. Woolf and K. R. Harris,JCS Faraday I 74, 933 (1978). H. J. V. Tyrrell and K. R. Harris,Diffusion in Liquids, (Butterworth, London, 1985).
J. P. Hansen and I. R. McDonald,Statistical Mechanics of Simple Fluids, (Academic Press, New York, 1976).
H. L. Friedman,A Course in Statistical Mechanics, (Prentice-Hall, New York, 1985).
W. A. Steele,Transport Phenomena in Fluids, H. J. M. Hanley, ed., (Marcel Dekker, New York, 1969), pp. 230–249.
J. G. Kirkwood, R. L. Baldwin, P. J. Dunlop, L. J. Gosting, and G. Kegeles,J. Chem. Phys. 33, 1505 (1960).
D. F. Calef and J. M. Deutch,Ann. Rev. Phys. Chem. 34, 493 (1983).
A. R. Altenberger and H. L. Friedman,J. Chem. Phys. 78, 4162 (1983), Eqs. (4.8) and (4.14).
H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolyte Solutions, 3rd edn., (Reinhold, New York, 1958), Chap. 4.
J. Happel and H. Brenner,Low Reynolds Number Hydrodynamics, (Prentice-Hall, Englewood Cliffs, 1965) Chaps. 6 and 8.
B. U. Felderhof,J. Phys. A. 11, 929 (1978).
O. Steinhauser,Chemical Physics 73, 155 (1982).
J. G. Kirkwood and F. P. Buff,J. Phys. Chem. 19, 774 (1951).
References for the data used to calculate the coefficients in Table I may be obtained from the second author (R. M.).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Friedman, H.L., Mills, R. Hydrodynamic approximation for distinct diffusion coefficients. J Solution Chem 15, 69–80 (1986). https://doi.org/10.1007/BF00646311
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00646311