Skip to main content
Log in

Solvation of amino acid residues in water and urea-water mixtures: Volumes and heat capacities of 20 amino acids in water and in 8 molar urea at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The limiting partial molar volumes Vo and heat capacities C o p of 20 amino acids have been determined in water and in 8 molar urea at 25.0°C using flow calorimetry and flow densimetry. The side chain contributions to Vo and C o p were obtained as the difference between the properties of the various amino acids and those of glycine, both in water and in 8M urea. The solvent accessible surface area of the amino acid residues were obtained using a method developed by Hermann, and the total surface areas were separated into their hydrophobic A Hb and hydrophilic components. In water, C o p values for the various residues C o p (R) were found well correlated with A Hb , though much less so in the urea solution. Hence, C o p (R) values, in water yield a good estimate of side chain hydrophobicity, but the (water→urea) transfer heat capacities appear strongly affected by specific solvation effects in the urea solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Meirovitch and H. A. Scheraga,Macromolecules 13, 1398 (1980);13, 1406 (1980).

    Google Scholar 

  2. C. Chotia,J. Mol. Biol. 105, 1 (1976); C. Chotia,Am. Rev. Biochem. 53, 537 (1984).

    Google Scholar 

  3. G. Nemethy, W. J. Peer, and H. A. Scheraga,Ann. Rev. Biophys. Bioeng. 10, 459 (1981).

    Google Scholar 

  4. S. Lapanje, inPhysicochemical Aspects of Protein Denaturation, (Wiley, New York, 1978).

    Google Scholar 

  5. F. Franks and D. Eagland, inCRC, Critical Reviews in Biochemistry 3, 165 (1975).

    Google Scholar 

  6. C. Tanford, inThe Hydrophobic Effects, (Wiley, New York, 1977); C. Tanford,Adv. Protein Chem. 24, 1 (1970); C. Tanford,J. Am. Chem. Soc. 86, 2050 (1964).

    Google Scholar 

  7. W. Kauzmann,Adv. Protein Chem. 14, 1 (1959).

    Google Scholar 

  8. V. Prakash and S. N. Timasheff,Anal. Biochem. 117, 330 (1981).

    Google Scholar 

  9. For other recent contributions in the model compound approach, see for example: J. Bello,J. Phys. Chem. 82, 1607 (1978); A. Cesar, E. Russo, and G. Barone,Int. J. Peptide Protein Res. 20, 8 (1982); G. Barone, P. Cacace, and V. Elia,J. Chem. Soc. Faraday Trans I 80, 2073 (1984); S. H. Dyke, G. R. Hedwig, and I. D. Watson,J. Solution Chem. 10, 321 (1981); T. E. Leslie and T. H. Lilley,Biopolymers 24, 695 (1985); P. Arnold and T. H. Lilley,J. Chem. Thermodyn. 17, 99 (1985).

    Google Scholar 

  10. C. Jolicoeur and J. boileau,Can. J. Chem. 56, 2707 (1978).

    Google Scholar 

  11. O. Enea and C. Jolicoeur,J. Phys. Chem. 86, 3870 (1982).

    Google Scholar 

  12. B. Riedl and C. Jolicoeur,J. Phys. Chem. 88, 3348 (1984).

    Google Scholar 

  13. C. Jolicoeur, inMethods of Biochemical Analysis, ‘Thermodynamic Flow Methods in Biochemistry: Calorimetry, Densimetry, and Dilatometry’, (D. Glick, ed., (Wiley, New York, 1981).

    Google Scholar 

  14. R. Lumry, R. Biltonen, and J. F. Brants,Biopolymers 4, 917 (1966).

    Google Scholar 

  15. J. A. Rupley, E. Gratton, and G. Careri,Trends in Biochemical Sciences 8, 18 (1983).

    Google Scholar 

  16. J. Sturtevant,Proc. Natl. Acad. Sci. USA 74, 2236 (1977).

    Google Scholar 

  17. P. Picker, P. A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  18. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  19. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  20. H. F. Stimson,Am. J. Phys. 23, 614 (1955).

    Google Scholar 

  21. W. A. Hargraves and G. C. Kresheck,J. Pgys. Chem. 73, 3249 (1969).

    Google Scholar 

  22. F. J. Millero, A. LoSurdo, and C. ShinJ. Phys. Chem. 82, 784 (1978).

    Google Scholar 

  23. G. DiPaola and B. Belleau,Can. J. Chem. 56, 1827 (1978).

    Google Scholar 

  24. R. Gopal, D. K. Agarwal, and S. Kumar,Indian J. Chem. 11, 1061 (1973).

    Google Scholar 

  25. C. H. Spink and I. Wadso,J. Chem. Thermodyn. 7, 561 (1975).

    Google Scholar 

  26. S. Cabani,J. Chem. Soc. Faraday Trans I 73, 476 (1977).

    Google Scholar 

  27. H. M. Huffman and E. L. Ellis,J. Am. Chem. Soc. 59, 2150 (1937).

    Google Scholar 

  28. Unpublished results from our laboratory.

  29. J. P. Greenstein and W. Winitz, inChemistry of the Amino Acids, Vol. 1, (Wiley-Interscience, New York, 1961), Chap. 4.

    Google Scholar 

  30. E. J. Cohn, T. I. McMeekin, J. T. Edsall, and M. H. Blanchard,J. Am. Chem. Soc. 56, 784 (1934).

    Google Scholar 

  31. J. C. Ahluwalia, C. Ostiguy, G. Perron, and J. E. Desnoyers,Can. J. Chem. 55, 3364 (1977).

    Google Scholar 

  32. K. P. Prasad and J. C. Ahluwalia,J. Solution Chem. 5, 491 (1976); K. P. Prasad and J. C. Ahluwalia,Biopolymers 19, 263 (1980).

    Google Scholar 

  33. L. G. Longsworth, inElectrochemistry in Biology and Medicine, T. S. Hedlovsky, ed., (Wiley-Interscience, New York, 1955), Chap. 12.

    Google Scholar 

  34. J. P. Greenstein and J. J. Wyman,J. Am. Chem. Soc. 58, 463 (1936).

    Google Scholar 

  35. E. J. Cohn and J. T. Edsall, inProteins, Amino Acids, and Peptides as Ions, (Reinhold, New York, 1943), Chap. 7.

    Google Scholar 

  36. J. Kirchnerova, P. G. Farrel, and J. T. Edward,J. Phys. Chem. 80, 1974 (1976).

    Google Scholar 

  37. K. P. Prasad and J. C. Ahluwalia,Biopolymers 19, 273 (1980).

    Google Scholar 

  38. N. Desrosiers, G. Perron, J. G. Mathieson, B. E. Conway, and J. E. Desnoyers,J. Solution Chem. 3, 789 (1974).

    Google Scholar 

  39. S. J. Gill and I. Wadso,Proc. Natl. Acad. Sci. USA 73, 2955 (1976); S. J. Dec and S. J. Gill,J. Solution Chem. 13, 27 (1984).

    Google Scholar 

  40. D. Mirejovsky and E. M. Arnett,J. Am. Chem. Soc. 105, 1112 (1983).

    Google Scholar 

  41. R. Lumry, E. Battistel, and C. Jolicoeur,Faraday Symp. Chem. Soc. 17, 93 (1982).

    Google Scholar 

  42. B. Lee and F. M. Richards,J. Mol. Biol. 55, 379 (1971).

    Google Scholar 

  43. R. B. Hermann,J. Phys. Chem. 76, 2754 (1972);Proc. Natl. Acad. Sci. USA 74, 4144 (1977).

    Google Scholar 

  44. C. Jolicoeur, J. Paquette, Y. Lavigne, and R. Zana, inSolution Behavior of Surfactants, Vol. 1, K. L. Mittal and E. J. Fendler, eds., (Plenum Press, New York, 1982), p. 389.

    Google Scholar 

  45. Tables of Interatomic Distances and Configurations in Molecules and Ions, (Chemical Society, London, 1958).

  46. J. Donohue and A. Caron,Acta. Cryst. 17, 1178 (1964).

    Google Scholar 

  47. R. A. Pasternak,Acta Cryst. 9, 341 (1956).

    Google Scholar 

  48. A. Bondi,J. Phys. Chem. 68, 441 (1964).

    Google Scholar 

  49. C. Chotia,J. Mol. Biol. 105, 1 (1976); C. Chotia,Nature 248, 338 (1974).

    Google Scholar 

  50. A. Shrake and J. A. Rupley,J. Mol. Biol. 79, 351 (1973).

    Google Scholar 

  51. Y. Nozaki and C. Tanford,J. Biol. Chem. 246, 2211 (1971).

    Google Scholar 

  52. D. Wetlavfer, S. K. Malik, L. Stroller, and R. L. Coffin,J. Am. Chem. Soc. 86, 508 (1964).

    Google Scholar 

  53. Y. Nozaki and C. Tanford,J. Biol. Chem. 238, 4074 (1963).

    Google Scholar 

  54. M. Abu-Hamdiyyah and A. Shehabuddin,J. Chem. Eng. Data 27, 74 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolicoeur, C., Riedl, B., Desrochers, D. et al. Solvation of amino acid residues in water and urea-water mixtures: Volumes and heat capacities of 20 amino acids in water and in 8 molar urea at 25°C. J Solution Chem 15, 109–128 (1986). https://doi.org/10.1007/BF00646283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646283

Key words

Navigation