Abstract
The limiting partial molar volumes Vo and heat capacities C o p of 20 amino acids have been determined in water and in 8 molar urea at 25.0°C using flow calorimetry and flow densimetry. The side chain contributions to Vo and C o p were obtained as the difference between the properties of the various amino acids and those of glycine, both in water and in 8M urea. The solvent accessible surface area of the amino acid residues were obtained using a method developed by Hermann, and the total surface areas were separated into their hydrophobic A Hb and hydrophilic components. In water, C o p values for the various residues C o p (R) were found well correlated with A Hb , though much less so in the urea solution. Hence, C o p (R) values, in water yield a good estimate of side chain hydrophobicity, but the (water→urea) transfer heat capacities appear strongly affected by specific solvation effects in the urea solution.
Similar content being viewed by others
References
H. Meirovitch and H. A. Scheraga,Macromolecules 13, 1398 (1980);13, 1406 (1980).
C. Chotia,J. Mol. Biol. 105, 1 (1976); C. Chotia,Am. Rev. Biochem. 53, 537 (1984).
G. Nemethy, W. J. Peer, and H. A. Scheraga,Ann. Rev. Biophys. Bioeng. 10, 459 (1981).
S. Lapanje, inPhysicochemical Aspects of Protein Denaturation, (Wiley, New York, 1978).
F. Franks and D. Eagland, inCRC, Critical Reviews in Biochemistry 3, 165 (1975).
C. Tanford, inThe Hydrophobic Effects, (Wiley, New York, 1977); C. Tanford,Adv. Protein Chem. 24, 1 (1970); C. Tanford,J. Am. Chem. Soc. 86, 2050 (1964).
W. Kauzmann,Adv. Protein Chem. 14, 1 (1959).
V. Prakash and S. N. Timasheff,Anal. Biochem. 117, 330 (1981).
For other recent contributions in the model compound approach, see for example: J. Bello,J. Phys. Chem. 82, 1607 (1978); A. Cesar, E. Russo, and G. Barone,Int. J. Peptide Protein Res. 20, 8 (1982); G. Barone, P. Cacace, and V. Elia,J. Chem. Soc. Faraday Trans I 80, 2073 (1984); S. H. Dyke, G. R. Hedwig, and I. D. Watson,J. Solution Chem. 10, 321 (1981); T. E. Leslie and T. H. Lilley,Biopolymers 24, 695 (1985); P. Arnold and T. H. Lilley,J. Chem. Thermodyn. 17, 99 (1985).
C. Jolicoeur and J. boileau,Can. J. Chem. 56, 2707 (1978).
O. Enea and C. Jolicoeur,J. Phys. Chem. 86, 3870 (1982).
B. Riedl and C. Jolicoeur,J. Phys. Chem. 88, 3348 (1984).
C. Jolicoeur, inMethods of Biochemical Analysis, ‘Thermodynamic Flow Methods in Biochemistry: Calorimetry, Densimetry, and Dilatometry’, (D. Glick, ed., (Wiley, New York, 1981).
R. Lumry, R. Biltonen, and J. F. Brants,Biopolymers 4, 917 (1966).
J. A. Rupley, E. Gratton, and G. Careri,Trends in Biochemical Sciences 8, 18 (1983).
J. Sturtevant,Proc. Natl. Acad. Sci. USA 74, 2236 (1977).
P. Picker, P. A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).
P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).
G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).
H. F. Stimson,Am. J. Phys. 23, 614 (1955).
W. A. Hargraves and G. C. Kresheck,J. Pgys. Chem. 73, 3249 (1969).
F. J. Millero, A. LoSurdo, and C. ShinJ. Phys. Chem. 82, 784 (1978).
G. DiPaola and B. Belleau,Can. J. Chem. 56, 1827 (1978).
R. Gopal, D. K. Agarwal, and S. Kumar,Indian J. Chem. 11, 1061 (1973).
C. H. Spink and I. Wadso,J. Chem. Thermodyn. 7, 561 (1975).
S. Cabani,J. Chem. Soc. Faraday Trans I 73, 476 (1977).
H. M. Huffman and E. L. Ellis,J. Am. Chem. Soc. 59, 2150 (1937).
Unpublished results from our laboratory.
J. P. Greenstein and W. Winitz, inChemistry of the Amino Acids, Vol. 1, (Wiley-Interscience, New York, 1961), Chap. 4.
E. J. Cohn, T. I. McMeekin, J. T. Edsall, and M. H. Blanchard,J. Am. Chem. Soc. 56, 784 (1934).
J. C. Ahluwalia, C. Ostiguy, G. Perron, and J. E. Desnoyers,Can. J. Chem. 55, 3364 (1977).
K. P. Prasad and J. C. Ahluwalia,J. Solution Chem. 5, 491 (1976); K. P. Prasad and J. C. Ahluwalia,Biopolymers 19, 263 (1980).
L. G. Longsworth, inElectrochemistry in Biology and Medicine, T. S. Hedlovsky, ed., (Wiley-Interscience, New York, 1955), Chap. 12.
J. P. Greenstein and J. J. Wyman,J. Am. Chem. Soc. 58, 463 (1936).
E. J. Cohn and J. T. Edsall, inProteins, Amino Acids, and Peptides as Ions, (Reinhold, New York, 1943), Chap. 7.
J. Kirchnerova, P. G. Farrel, and J. T. Edward,J. Phys. Chem. 80, 1974 (1976).
K. P. Prasad and J. C. Ahluwalia,Biopolymers 19, 273 (1980).
N. Desrosiers, G. Perron, J. G. Mathieson, B. E. Conway, and J. E. Desnoyers,J. Solution Chem. 3, 789 (1974).
S. J. Gill and I. Wadso,Proc. Natl. Acad. Sci. USA 73, 2955 (1976); S. J. Dec and S. J. Gill,J. Solution Chem. 13, 27 (1984).
D. Mirejovsky and E. M. Arnett,J. Am. Chem. Soc. 105, 1112 (1983).
R. Lumry, E. Battistel, and C. Jolicoeur,Faraday Symp. Chem. Soc. 17, 93 (1982).
B. Lee and F. M. Richards,J. Mol. Biol. 55, 379 (1971).
R. B. Hermann,J. Phys. Chem. 76, 2754 (1972);Proc. Natl. Acad. Sci. USA 74, 4144 (1977).
C. Jolicoeur, J. Paquette, Y. Lavigne, and R. Zana, inSolution Behavior of Surfactants, Vol. 1, K. L. Mittal and E. J. Fendler, eds., (Plenum Press, New York, 1982), p. 389.
Tables of Interatomic Distances and Configurations in Molecules and Ions, (Chemical Society, London, 1958).
J. Donohue and A. Caron,Acta. Cryst. 17, 1178 (1964).
R. A. Pasternak,Acta Cryst. 9, 341 (1956).
A. Bondi,J. Phys. Chem. 68, 441 (1964).
C. Chotia,J. Mol. Biol. 105, 1 (1976); C. Chotia,Nature 248, 338 (1974).
A. Shrake and J. A. Rupley,J. Mol. Biol. 79, 351 (1973).
Y. Nozaki and C. Tanford,J. Biol. Chem. 246, 2211 (1971).
D. Wetlavfer, S. K. Malik, L. Stroller, and R. L. Coffin,J. Am. Chem. Soc. 86, 508 (1964).
Y. Nozaki and C. Tanford,J. Biol. Chem. 238, 4074 (1963).
M. Abu-Hamdiyyah and A. Shehabuddin,J. Chem. Eng. Data 27, 74 (1982).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jolicoeur, C., Riedl, B., Desrochers, D. et al. Solvation of amino acid residues in water and urea-water mixtures: Volumes and heat capacities of 20 amino acids in water and in 8 molar urea at 25°C. J Solution Chem 15, 109–128 (1986). https://doi.org/10.1007/BF00646283
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00646283