Skip to main content
Log in

Densities and compressibilities of aqueous sodium carbonate and bicarbonate from 0 to 45°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The densities and the sound speeds of aqueous NaHCO3 and Na2CO3 solutions were measured from 0.05 to 1.0m and from 0 to 45°C. These data were fitted to functions of molality and temperature and were used to calculate the apparent molal volumes Vϕ and compressibilites κφ of these solutions. Polynomial expression for Vϕ and κφ as functions of molality and temperature have been determined. The partial molal volumes and compressibilities of these solutions and literature data have been used to determine the volume ΔV and compressibility Δκ changes for the ionization of carbonic acid in aqueous solutions. These values of ΔV and Δκ have been used to estimate the effect of pressure on the ionization constants for carbonic acid from 0 to 45°C. The calculated pressure coefficients are in good agreement with the measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Ellis,J. Chem. Soc. 3689 (1959).

  2. A. Disteche and S. Disteche,J. Electrochem. Soc. 114, 330 (1968).

    Google Scholar 

  3. A. J. Read,J. Solution Chem. 4, 53 (1975).

    Google Scholar 

  4. C. Culberson and R. M. Pytkowicz,Limnol. Oceanogr. 3, 403 (1968).

    Google Scholar 

  5. B. B. Owen ans S. R. Brinkley, Jr.,Chem. Rev. 29, 461 (1941).

    Google Scholar 

  6. F. J. Millero and R. A. Berner,Geochim. Cosmochim. Acta 36, 92 (1972).

    Google Scholar 

  7. F. J. Millero, inChemical Oceanography, J. P. Riley and G. Skirrow, eds., Vol. 8, (Academic Press, New York, 1983), Chap. 1.

    Google Scholar 

  8. F. J. Millero, inWater and Aqueous Solutions, R. A. Horne, ed., (John Wiley, New York, 1972), p. 519.

    Google Scholar 

  9. F. J. Millero, A. L. Laferriere, and P. V. Chetirkin,J. Phys. Chem. 81, 1737 (1977).

    Google Scholar 

  10. I. W. Duedall,Environ. Sci. Tech. 2, 706 (1968).

    Google Scholar 

  11. F. J. Millero, G. K. Ward, and P. V. Chetirken,J. Acoust. Soc. Am. 61, 1492 (1977).

    Google Scholar 

  12. A. J. Ellis and I. M. McFadden,Geochim. Cosmochim. Acta 36, 413 (1972).

    Google Scholar 

  13. P. Picker, E. Trembley, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  14. F. J. Millero, A. Gonzalez, and G. K. Ward,J. Mar. Res. 34, 61 (1976).

    Google Scholar 

  15. G. S. Kell,J. Chem. Eng. Data 20, 97 (1975).

    Google Scholar 

  16. F. J. Millero, D. Lawson, and A. Gonzalez,J. Geophys. Res. 81, 1177 (1976).

    Google Scholar 

  17. F. J. Millero and T. Kubinski,J. Acoust. Soc. Am. 57, 312 (1975).

    Google Scholar 

  18. V. A. Del Grosso and C. W. Mader,J. Acoust. Soc. Am. 52, 1442 (1972).

    Google Scholar 

  19. C.-T. Chen and F. J. Millero,J. Acoust. Soc. Am. 60, 1270 (1976).

    Google Scholar 

  20. A. LoSurdo, K. Bernstrom, C. Jonsson, and F. J. Millero,J. Phys. Chem. 83, 1255 (1979).

    Google Scholar 

  21. F. J. Millero, inActivity Coefficients in Electrolyte Solutions, Vol. II, R. M. Pytkowicz, ed., (CRC Press, Boca Raton, FL, 1979), p. 63–151.

    Google Scholar 

  22. N. S. Osborne, H. F. Stimson, and D. G. Ginnings,J. Res. Natl. Bur. Stds. (U.S.)23, 197 (1939).

    Google Scholar 

  23. H. F. Stimson,Am. J. Phys. 23, 614 (1955).

    Google Scholar 

  24. H. J. Millero, G. Perron, and J. E. Desnoyers,J. Geophys. Res. 78, 4499 (1973).

    Google Scholar 

  25. F. J. Millero, J. Ricco, and and D. R. Schreiber,J. Solution Chem. 11, 671 (1982).

    Google Scholar 

  26. G. Perron, J. E. Desnoyers, and F. J. Millero,Can. J. Chem. 53, 1134 (1975).

    Google Scholar 

  27. J. E. Desnoyers, C. de Vissar, G. Perron, and P. Picker,J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  28. C.-T. Chen and F. J. Millero,J. Mar. Res. 36, 675 (1978).

    Google Scholar 

  29. C.-T. Chen, R. A. Fine, and F. J. Millero,J. Chem. Phys. 66, 2142 (1977).

    Google Scholar 

  30. F. J. Millero, inThermodynamic of Aqueous Systems with Industrial Applications, S. A. Newman, ed., A.C.S. Symposium Ser. 133, (A.C.S., Washington, 1980), p. 581.

    Google Scholar 

  31. A. LoSurdo, E. M. Alzola, and F. J. Millero,J. Chem. Thermodynamics 14, 649 (1982).

    Google Scholar 

  32. R. Damasceno, J. P. Hershey, and F. J. Millero, in preparation.

  33. T. F. Young and M. B. Smith,J. Phys. Chem. 58, 716 (1954).

    Google Scholar 

  34. D. A. Lown, H. R. Thirsk, and Wynne-Jones,Trans. Faraday Soc. 64, 2073 (1968).

    Google Scholar 

  35. G. K. Ward and F. J. Millero,J. Solution Chem. 3, 417 (1974).

    Google Scholar 

  36. G. K. Ward and F. J. Millero,Geochim. Cosomochim. Acta 39, 155 1595 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hershey, J.P., Sotolongo, S. & Millero, F.J. Densities and compressibilities of aqueous sodium carbonate and bicarbonate from 0 to 45°C. J Solution Chem 12, 233–254 (1983). https://doi.org/10.1007/BF00646199

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646199

Key words

Navigation