Advertisement

Journal of Solution Chemistry

, Volume 17, Issue 3, pp 203–212 | Cite as

Hydrophobic interactions: Ionic mobilities of tetraphenylphosphonium chloride in aqueous solutions at 25°C

  • M. Perie
  • J. Perie
  • M. Chemla
Article

Abstract

The present study provides systematic data of conductivity, transference number and apparent molal volume for Ph4PCl in water at 25°C over a concentration range 0.005–0.5 mol-l−1. Transference numbers have been measured by labelling the migrating species with radiotracers14C for Ph4P+ and36Cl for the anion. An unexpected concentration depenence for the transference numbers is observed that deviates markedly from that of a simple 1:1 electrolyte. Excess transport properties have been interpreted in terms of cation dimerization induced by hydrophobic interactions.

Key words

Transference numbers ionic conductivity apparent molal volumes hydrophobic interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ben Naim, inHydrophobic Interactions (Plenum Publishing Corporation, 1980, Chap. 5–7).Google Scholar
  2. 2.
    W. Y. Wen, inWater and Aqueous Solutions R. A. Horne, ed., (Wiley, New York, 1972, Chap. 15).Google Scholar
  3. 3.
    L. A. Woolf and H. Weingärtner,Faraday Symp. Chem. Soc. 17, 41 (1982).Google Scholar
  4. 4.
    E. Grunwald, G. Baugelman, and G. Kohnstan,J. Am. Chem. Soc. 82, 5801 (1960).Google Scholar
  5. 5.
    A. J. Parker,Chem. Rev. 69, 1 (1969).Google Scholar
  6. 6.
    J. I. Kim,J. Phys. Chem. 82, 191 (1978).Google Scholar
  7. 7.
    M. A. Coplan and R. M. Fuoss,J. Phys. Chem. 68, 1177 (1964).Google Scholar
  8. 8.
    G. Petrella, M. Castagnollo, A. Sacco, and M. Petrella,J. Solution Chem. 9, 331 (1980).Google Scholar
  9. 9.
    J. F. Skinner and R. M. Fuoss,J. Phys. Chem. 68, 1882 (1964).Google Scholar
  10. 10.
    S. Schiavo and G. Marrosu,Z. Phys. Chem. N. F. 105, 157 (1977).Google Scholar
  11. 11.
    A. Fidler and J. Vresta'l,Collect. Czechoslov. Chem. Com. 35, 1905 (1970).Google Scholar
  12. 12.
    G. Kalfoglu and L. H. Bowen,J. Phys. Chem. 73, 2728 (1969).Google Scholar
  13. 13.
    M. Perie, J. Perie, and M. Chemla,Electrochim. Acta. 19, 753 (1974).Google Scholar
  14. 14.
    M. Perie, J. Perie and M. Chemla,Electrochim. Acta. 21, 739 (1976).Google Scholar
  15. 15.
    B. E. Conway, inIonic Hydration in Chemistry and Biophysics (Elsevier, Amsterdam, 1981, p. 425).Google Scholar
  16. 16.
    J. F. Coetzee and W. R. Sharpe,J. Phys. Chem. 75, 3141 (1971).Google Scholar
  17. 17.
    M. Perie, J. Perie, and M. Chemla,J. Solution Chem. 13, 721 (1984).Google Scholar
  18. 18.
    J. Quint and A. Viallard,J. Solution Chem. 7, 533 (1978).Google Scholar
  19. 19.
    J. Perie, M. Perie, and J. C. Justice,J. Solution Chem. 9, 395 (1980).Google Scholar
  20. 20.
    P. Letellier and G. Gaboriaud,J. Chim. Phys. 78, 829 (1981).Google Scholar
  21. 21.
    J. C. Justice, J. Perie, and M. Perie,J. Solution Chem. 9, 583 (1980).Google Scholar
  22. 22.
    H. E. Wirth,J. Phys. Chem. 71, 2922 (1967).Google Scholar
  23. 23.
    R. H. Wood and H. L. Anderson,J. Phys. Chem. 71, 1871 (1967).Google Scholar
  24. 24.
    R. J. Wigent and L. Leifer,J. Phys. Chem. 88, 4420 (1984).Google Scholar
  25. 25.
    P. G. N. Moseley and M. Spiro,J. Solution Chem. 1, 39 (1972).Google Scholar
  26. 26.
    R. M. Fuoss and K. L. Hsia,Proc. Natl. Acad. Sci. USA 57, 1550 (1967).Google Scholar
  27. 27.
    R. A. Robinson and R. H. Stokes, inElectrolyte Solutions (Butterworths, London, 1965)Google Scholar
  28. 27.a)
  29. 27.b)
  30. 28.
    H. S. Harned and B. B. Owen, inThe Physical Chemistry of Electrolytic Solutions (Reinhold, New York, 1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • M. Perie
    • 1
  • J. Perie
    • 1
  • M. Chemla
    • 1
  1. 1.Laboratoire d'Electrochimie (U.A. 430)Université P. et M. CurieParis, Cedex 05France

Personalised recommendations