Journal of Solution Chemistry

, Volume 14, Issue 5, pp 333–344 | Cite as

Activity coefficients of hydrochloric acid and ionic interactions in the system HCl-LiCl-H2O from 5 to 45°C

  • Munessar Sankar
  • J. B. Macaskill
  • Roger G. Bates


The activity coefficient of HCl (γA) in aqueous mixtures of HCl and LiCl was determined by emf measurements of cells without liquid junction at five values of the total ionic strength, namely 0.1, 0.5, 1.0, 2.0, and 3.0 mol-kg−1 (m), and at nine temperatures from 5 to 45°C. The ionic strength fraction (γB) of LiCl in the mixtures was varied from 0 to 0.9. The values of log γA were found to vary linearly with the molality of salt, in accordance with the ‘Harned rule,’ indicating that the properties of these mixtures are determined primarily by binary ionic interactions of the type H-Li and that ternary interactions are not significant even at I=3m. The results also support the suggestion of Robinson that the interaction parameter θH,Li is insensitive to temperature changes when I is less than 2m.

Key Words

Activity coefficient electrolyte mixtures emf measurements Harned rule HCl-LiCl mixtures hydrochloric acid ion interactions lithium chloride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Robinson, R. N. Roy, and R. G. Bates,J. Solution Chem. 3, 837 (1974).Google Scholar
  2. 2.
    J. B. Macaskill, R. A. Robinson, and R. G. Bates,J. Solution Chem. 6, 385 (1977).Google Scholar
  3. 3.
    J. B. Macaskill and R. G. Bates,J. Solution Chem. 7, 433 (1978).Google Scholar
  4. 4.
    J. B. Macaskill, C. A. Vega, and R. G. Bates,J. Chem. j ng. Data 23, 314 (1978).Google Scholar
  5. 5.
    M. Sankar, J. B. Macaskill, and R. G. Bates,J. Solution Chem. 10, 169 (1981).Google Scholar
  6. 6.
    H. S. Harned and B. B. Owen, inThe Physical Chemistry of Electrolytic Solutions, 3rd edn., (Reinhold, New York, 1958), Chap. 14.Google Scholar
  7. 7.
    H. S. Harned and H. R. Copson,J. Am. Chem. Soc. 55, 2206 (1933).Google Scholar
  8. 8.
    R. A. Robinson and R. H. Stokes, inElectrolyte Solutions, rev. edn., (Butterworths, London, 1970), Appendix 8.10, p. 448.Google Scholar
  9. 9.
    G. Scatchard, R. M. Rush, and J. S. Johnson,J. Phys. Chem. 74, 3786 (1970).Google Scholar
  10. 10.
    K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).Google Scholar
  11. 11.
    R. G. Bates, E. A. Guggenheim, H. S. Harned, D. J. G. Ives, G. J. Janz, C. B. Monk, J. E. Prue, R. A. Robinson, R. H. Stokes, and W. F. K. Wynne-Jones,J. Chem. Phys. 25, 361 (1956);26, 222 (1957).Google Scholar
  12. 12.
    R. G. Bates and R. A. Robinson,J. Solution Chem. 9, 455 (1980).Google Scholar
  13. 13.
    H. S. Harned and R. W. Ehlers,J. Am. Chem. Soc. 55, 2179 (1933).Google Scholar
  14. 14.
    J. E. Hawkins,J. Am. Chem. Soc. 54, 4480 (1932).Google Scholar
  15. 15.
    R. A. Robinson,J. Solution Chem. 9, 449 (1980).Google Scholar
  16. 16.
    K. S. Pitzer and G. Mayorga,J. Phys. Chem. 77, 2300 (1973).Google Scholar
  17. 17.
    L. F. Silvester and K. S. Pitzer,J. Solution Chem. 7, 327 (1978).Google Scholar
  18. 18.
    R. G. Bates, inDetermination of pH, Theory and Practice, 2nd edn., (Wiley, New York, 1973), Appendix, Table 4.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Munessar Sankar
    • 1
  • J. B. Macaskill
    • 1
  • Roger G. Bates
    • 1
  1. 1.Department of ChemistryUniversity of FloridaGainesville

Personalised recommendations