Skip to main content
Log in

Quasichemical interpretation of the ultrasonic velocity in ternary aqueous systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The quasichemical model of hydration have been used to calculate the speed of ultrasound in binary solutions of water and nonelectrolyte. The model has been confined to systems that exhibit a maximum in the ultrasonic velocity vs. nonelectrolyte concentration. The parameters of the model are the hydration equilibrium constant, the nonelectrolyte hydration number, and the molar volume and compressibility of the hydrated nonelectrolyte. These have been fitted to experimental results by the method of least squares. The model calculations reproduce qualitatively the ultrasonic velocity as a function of nonelectrolyte concentration. The calculated maximum of the ultrasonic velocity is generally too low, but the nonelectrolyte concentration at which this maximum occurs agrees well with experiment.

Addition of a third component shift the velocity maximum. The quasichemical model has also been used to calculate this shift. These calculations have been based on the parameters developed for the binary system. The shift on the nonelectrolyte concentration scale is reproduced satisfactorily, but the shift of the maximal value of the ultrasonic velocity is less accurately predicted by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Yasunaga, Y. Hirahata, Y. Kawano, and M. Miura,Bull. Chem. Soc. Jpn. 37, 867 (1964).

    Google Scholar 

  2. T. Yasunaga, I. Usui, K. Iwata, and M. Miura,Bull. Chem. Soc. Jpn. 37, 1658 (1964).

    Google Scholar 

  3. J. Antosiewicz, A. Juszkiewicz, and D. Shugar,J. Phys. Chem. 86, 4831 (1982).

    Google Scholar 

  4. J. Antosiewicz and D. Shugar,J. Solution Chem. 12, 783 (1983).

    Google Scholar 

  5. J. Antosiewicz and D. Shugar,J. Solution Chem. 13, 493 (1984).

    Google Scholar 

  6. A. Juszkiewicz and J. Potaczck,Archiv. Acoust. 2, 207 (1977).

    Google Scholar 

  7. A. Juszkiewicz,Archiv. Acoust. 6, 307 (1981).

    Google Scholar 

  8. A. Juszkiewicz and J. Potaczek,Archiv. Acoust. 6, 401 (1981).

    Google Scholar 

  9. J. H. Andrea, P. D. Edmonds, and J. F. McKellar,Acustica 15, 74 (1965).

    Google Scholar 

  10. J. Padova,J. Phys. Chem. 72, 796 (1968).

    Google Scholar 

  11. T. Mori, K. Hagiwara, J. Komiyama, and T. Ijima,J. Chem. Thermodyn. 12, 41 (1980).

    Google Scholar 

  12. P. A. Zagoretz and S. Skobelev,Zhur. Struct. Khim. 8, 22 (1967).

    Google Scholar 

  13. M. I. Krutous and I. M. Batayev,Koord. Khim. 2, 1041 (1976).

    Google Scholar 

  14. E. K. Baumgartner and G. Atkinson,J. Phys. Chem. 75, 2336 (1971).

    Google Scholar 

  15. G. L. Bertrand and L. E. Smith,J. Phys. Chem. 74, 4171 (1970).

    Google Scholar 

  16. J. Lara and J. Desnoyers,J. Solution Chem. 10, 465 (1981).

    Google Scholar 

  17. O. Kiyohara, P. J. D'Arcy, and G. C. Benson,Can. J. Chem. 57, 1006 (1979).

    Google Scholar 

  18. M. von Stackelberg and W. Jahns,Z. Electrochem. 58, 162 (1954).

    Google Scholar 

  19. H. Shiio, T. Ogawa, and H. Yoshihashi,J. Amer. Chem. Soc. 77, 4980 (1955).

    Google Scholar 

  20. F. Franks and D. J. G. Ives,Quarterly Rev. 20, 1 (1966).

    Google Scholar 

  21. A. Hvidt,Ann. Rev. Biophys. Bioeng. 12, 1 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antosiewicz, J., Høiland, H., Zolkiewski, M. et al. Quasichemical interpretation of the ultrasonic velocity in ternary aqueous systems. J Solution Chem 16, 285–294 (1987). https://doi.org/10.1007/BF00646120

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646120

Key Words

Navigation