Skip to main content
Log in

The state of aggregation of methyl orange in water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The electrical conductances, UV-visible absorbances, and osmotic coefficients of aqueous solutions of methyl orange, sodium 4-(4′-dimethylaminophenyldiazo)-phenylsulfonate, have been measured at 25°C. From the behavior of these quantities as a function of concentration it is concluded that the methyl orange anion is almost completely dimerized above 0.2 mM and undergoes further aggregation above 1 mM. Literature values of the osmotic coefficients of aqueous methyl orange at 50 and 60°C are fitted to the monomer-dimer equilibrium yielding values of the dimer formation constant, Kd. Extrapolation to 25°C yields an estimate of Kd=9200 at this temperature. This result is shown to be consistent with the conductance data at 25°C presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tanford,The Hydrophobic Effect: Formation of Micelles and Biological Membranes (Wiley-Interscience, New York, 1973).

    Google Scholar 

  2. K. H. Scheller, F. Hofstetter, P. R. Mitchell, B. Prijs, and H. J. Sigel,J. Am. Chem. Soc. 103, 247 (1981).

    Google Scholar 

  3. P. O. P. Ts'o,Basic Principles in Nucleic Acid Chemistry, Vol. 1, (Academic Press, New York, 1974).

    Google Scholar 

  4. D. G. Duff and C. Giles, inWater, A Comprehensive Treatise, F. Franks, ed., Vol. 4, (Plenum Press, New York, 1975).

    Google Scholar 

  5. E. H. Braswell,J. Phys. Chem. 88, 3653 (1984).

    Google Scholar 

  6. R. L. Reeves, M. S. Maggio, and S. A. Harkaway,J. Phys. Chem. 83, 2359 (1979).

    Google Scholar 

  7. C. Robinson and H. E. Garrett,Trans. Faraday Soc. 35, 771 (1939).

    Google Scholar 

  8. F. Quadrifoglio and V. Crescenzi,J. Colloid Interface Sci. 35, 447 (1971).

    Google Scholar 

  9. M. Mitsuishi and Y. Y. Yamaguchi,Bull. Chem. Soc. Jpn 52, 3496 (1975).

    Google Scholar 

  10. M. D. Jackson and W. R. Gilkerson,J. Am. Chem. Soc. 101, 328 (1979).

    Google Scholar 

  11. R. A. Robinson and R. H. Stokes,J. Phys. Chem. 65, 1954 (1961).

    Google Scholar 

  12. R. L. Reeves and S. A. Harkaway,J. Colloid Interface Sci. 64, 342 (1978).

    Google Scholar 

  13. K. Winkelblech,Zeit. Physik. Chem. 36, 546 (1901).

    Google Scholar 

  14. R. L. Reeves, R. S. Kaiser, M. S. Maggio, E. A. Sylvestre, and W. H. Lawton,Can. J. Chem. 51, 628 (1973).

    Google Scholar 

  15. W. R. Brode, I. F. Seldin, and G. F. Wyman,J. Am. Chem. Soc. 77, 2762 (1955).

    Google Scholar 

  16. H. S. Harned and B. B. Owen,Physical Chemistry of Electrolytic Solutions, 3rd edn., (Reinhold Publishing Corp., New York, 1958), p. 200.

    Google Scholar 

  17. P. Mukerjee,J. Phys. Chem. 62, 1404 (1958).

    Google Scholar 

  18. S. E. Sheppard and A. L. Geddes,J. Am. Chem. Soc. 66, 1995 (1944).

    Google Scholar 

  19. A. R. Monahan and D. F. Blossey,J. Phys. Chem. 23, 4014 (1970).

    Google Scholar 

  20. R. A. Robinson and R. H. Stokes,Electrolyte Solutions (Butterworth's, London, 1959), p. 481.

    Google Scholar 

  21. K. S. Pitzer,J. Chem. Soc. Faraday 2 68, 101 (1972).

    Google Scholar 

  22. For example, see H. Hoiland, A. Skauge, and I. Stokkeland,J. Phys. Chem. 88, 6350 (1984).

    Google Scholar 

  23. Handbook of Mathematical Tables, 1st edn., S. M. Selby, R. C. Weast, and R. S. Shankland, eds., (Chemical Rubber Publishing, Ohio, 1962), p. 270–273.

    Google Scholar 

  24. W. H. Lee and R. J. Wheaton,J. Chem. Soc. Faraday 2 74, 743, 1456 (1978);75, 1128 (1979).

    Google Scholar 

  25. A. D. Pethybridge,Z. Phys. Chem., (Wiesbaden) 133, 143 (1982).

    Google Scholar 

  26. W. R. Gilkerson,J. Solution Chem. 15, 551 (1986).

    Google Scholar 

  27. Ref. 16, p. 284.

    Google Scholar 

  28. E. E. Tucker, E. H. Lane, and S. D. Christian,J. Solution Chem. 10, 1 (1981).

    Google Scholar 

  29. F. Franks, Chap. 1 in Ref. 4.

    Google Scholar 

  30. I. M. Klotz, R. K. Burkhard, and J. M. Urquart,J. Am. Chem. Soc. 74, 202 (1952), and earlier references therein.

    Google Scholar 

  31. I. M. Klotz, G. P. Royer, and A. R. Sloniewsky,Biochem. 8, 4752 (1969).

    Google Scholar 

  32. M. De Vjilder,J. Chem. Soc. Faraday 1 81, 1369 (1985); and papers cited therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kendrick, K.L., Gilkerson, W.R. The state of aggregation of methyl orange in water. J Solution Chem 16, 257–267 (1987). https://doi.org/10.1007/BF00646118

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646118

Key Words

Navigation