Skip to main content
Log in

Carbon-13 magnetic resonance as a probe for solute-solvent interaction in dipolar heterocyclic media

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Carbon-13 magnetic resonance shifts of solvent carbon atoms were measured as a function of solute concentration for a series of alkali metal salts inN-methyl-2-pyrrolidone and 3-methyl-2-oxazolidone, which are 5-membered dipolar-aprotic heterocyclic solvents of dielectric constants 32.0 and 77.5, respectively. Chemical shifts were linear functions of solute molarities in the concentration range of 0.19–0.75M. Cation-solvent interaction decreased in tenacity as Li+>Na+>K+. Shifts were anion dependent for both solvents, and the magnitude of solvent structure shielding, by solute anions, decreased as tetraphenylborate > thiocyanate > perchlorate. The carbonyl shifts ofN-methyl-2-pyrrolidone and 3-methyl-2-oxazolidone were compared to other heterocyclic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Paudler,Nuclear Magnetic Resonance (Allyn and Bacon, Boston 1971).

    Google Scholar 

  2. J. R. Wasson and D. R. Lorenz,Anal. Chem. 48, 246R (1976).

    Google Scholar 

  3. A. I. Popov,Solute-Solvent Interactions, Vol. 2, J. F. Coetzee and C. D. Ritchie, eds. (Marcel Dekker, 1976), Chap. 13,

  4. A. K. Covington, T. H. Lilley, K. E. Newman, and G. A. Porthouse,J. Chem. Soc. Faraday Trans. 1 69, 963 (1973).

    Google Scholar 

  5. J. F. Hinton and E. S. Amis,Chem. Rev. 71, (6), 627 (1971).

    Google Scholar 

  6. T. Drakenberg and B. Lindman,J. Colloid Interface Sci. 44, 184 (1973).

    Google Scholar 

  7. T. L. Buxton and J. A. Caruso,J. Am. Chem. Soc. 96, 6033 (1974).

    Google Scholar 

  8. J. Rosenfarb and J. A. Caruso,Can. J. Chem. 54, 1660 (1976).

    Google Scholar 

  9. J. Rosenfarb and R. J. Baker,J. Phys. Chem. 82, 329 (1978).

    Google Scholar 

  10. P. G. Sears, W. H. Fortune and F. Blumenshine,J. Chem. Eng. Data 11, 406 (1966).

    Google Scholar 

  11. H. L. Huffman, Jr. and P. G. Sears,J. Solution Chem. 1, 187 (1972).

    Google Scholar 

  12. B. P. Fabricand and S. Goldberg,J. Chem. Phys. 34, 1624 (1961).

    Google Scholar 

  13. G. G. Levy and G. L. Nelson,Carbon-13 Nuclear Magnetic Resonance for Organic Chemists (Wiley-Interscience, 1972), pp. 112, 123–126.

  14. H.-O. Kalinowski and H. Kessler,Org. Magn. Res. 6, 305 (1974).

    Google Scholar 

  15. M. D. Dyke, P. G. Sears, and A. I. Popov,J. Phys. Chem. 71, 4140 (1967).

    Google Scholar 

  16. B. J. Barker, H. L. Huffman, Jr. and P. G. Sears,J. Phys. Chem. 78, 2689 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenfarb, J., Baugh, T.D. Carbon-13 magnetic resonance as a probe for solute-solvent interaction in dipolar heterocyclic media. J Solution Chem 7, 457–462 (1978). https://doi.org/10.1007/BF00646116

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646116

Key words

Navigation