Skip to main content
Log in

Effect of temperature on the hydration of hydrophobic lons. Apparent molal volumes and heat capacities of Bu4PBr, Ph4PBr, and NaBPh4 in aqueous solutions at various temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The density and specific heat of aqueous solutions of Bu4PBr, Ph4PBr, and NaBPh4 have been measured at various temperatures between 10 and 45°C. The derived limiting apparent molal volumes (φ ov ) and heat capacities (φ oc ) have been examined for specific effects in the hydration of alkyl- and aryl-substituted quaternary ions, using also similar results on the tetraalkylammonium series. While φ ov and φ oc of Bu4PBr and Bu4NBr differ only in magnitude by a few percent, the properties of Ph4PBr are sharply distinct, especially φ oc . NaBPh4 also exhibits a distinct behavior in the temperature dependence of its φ oc ; the effect, however, is much less pronounced than that previously reported by other investigators. Within the data presently available, φ oc of hydrophobic ions appears rather invariant with temperature; for the compounds studied here, the relative change in φ oc with temperature is significantly smaller than the relative change in φ ov . These results are correlated with spectroscopic data reported earlier, using a phenomenological description of the two-state behavior of liquid water. The latter is used to calculate the solvent relaxational contribution to the heat capacity of water and to φ oc of the hydrophobic ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Jolicoeur, N. D. The, and A. Cabana,Can. J. Chem. 49, 12 (1971).

    Google Scholar 

  2. P. R. Philip and C. Jolicoeur,J. Phys. Chem. 77, 3071 (1973).

    Google Scholar 

  3. C. Jolicoeur and H. L. Freedman,Ber. Bunsenges. Physik. Chem. 75, 248 (1971).

    Google Scholar 

  4. C. Jolicoeur, P. R. Philip, G. Perron, P. A. Leduc, and J. E. Desnoyers,Can. J. Chem. 50, 3167 (1972).

    Google Scholar 

  5. G. Kalfoglou and L. H. Bowen,J. Phys. Chem. 73, 2728 (1969).

    Google Scholar 

  6. J. F. Coetzee and W. R. Sharpe,J. Phys. Chem. 75, 3141 (1971).

    Google Scholar 

  7. C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 75, 3606 (1971).

    Google Scholar 

  8. J. F. Skinner and R. M. Fuoss,J. Phys. Chem. 68, 1882 (1964).

    Google Scholar 

  9. F. J. Millero,J. Chem. Eng. Data 16, 229 (1971); b. F. J. Millero,J. Chem. Eng. Data 15, 562 (1970).

    Google Scholar 

  10. H. S. Frank and W. Y. Wen,Disc. Faraday Soc. 24, 133 (1957).

    Google Scholar 

  11. S. Subramanian and J. C. Ahluwalia,J. Phys. Chem. 72, 2525 (1968).

    Google Scholar 

  12. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  13. F. Vaslow,J. Phys. Chem. 70, 2286 (1966).

    Google Scholar 

  14. P. Picker, P. A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  15. P. Picker, C. Jolicoeur, and J. E. Desnoyers,J. Chem. Ed. 45, 614 (1968).

    Google Scholar 

  16. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolytic Solutions, 3rd ed. (Reinhold Publishing, New York, 1958).

    Google Scholar 

  17. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  18. H. F. Stimson,Am. J. Phys. 23, 614 (1955).

    Google Scholar 

  19. O. Redlich and D. M. Meyer,Chem. Rev. 64, 221 (1964).

    Google Scholar 

  20. P. R. Philip and J. E. Desnoyers,J. Solution Chem. 1, 353 (1972).

    Google Scholar 

  21. G. Perron and J. E. Desnoyers, to be published.

  22. G. Perron and J. E. Desnoyers,J. Chem. Eng. Data 17, 136 (1972).

    Google Scholar 

  23. M. J. Mastroiani and C. M. Criss,J. Chem. Thermodyn. 4, 321 (1972).

    Google Scholar 

  24. G. Perron and J. E. Desnoyers, private communication.

  25. F. J. Millero,Water and Aqueous Solutions, R. A. Horne, ed. (Wiley-Interscience, New York, 1972), p. 519.

    Google Scholar 

  26. C. Jolicoeur and G. Lacroix,Can. J. Chem. 51, 3051 (1973).

    Google Scholar 

  27. H. Rüterjans, F. Schreiner, U. Sage, and Th. Ackermann,J. Phys. Chem. 73, 986 (1969).

    Google Scholar 

  28. C. M. Davis, Jr., and J. Jarzynski,Advan. Mol. Relax. Processes 1, 155 (1967).

    Google Scholar 

  29. A. Ben Naim,J. Phys. Chem. 69 1922 (1965).

    Google Scholar 

  30. C. M. Davis, Jr., and T. A. Litovitz,J. Chem. Phys. 42, 2563 (1965).

    Google Scholar 

  31. A. Ben Naim,Trans. Faraday Soc,66, 2749 (1970).

    Google Scholar 

  32. A. Eucken,Z. Electrochem. 52, 255 (1948);53, 102 (1949).

    Google Scholar 

  33. C. De Visser and G. Somsen,J. Chem. Thermodyn. 5, 147 (1973).

    Google Scholar 

  34. R. A. Pierrotti,J. Chem. Phys. 69, 281 (1965).

    Google Scholar 

  35. P. R. Philip and C. Jolicoeur,J. Solution Chem., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolicoeur, C., Philip, P.R. Effect of temperature on the hydration of hydrophobic lons. Apparent molal volumes and heat capacities of Bu4PBr, Ph4PBr, and NaBPh4 in aqueous solutions at various temperatures. J Solution Chem 4, 3–16 (1975). https://doi.org/10.1007/BF00646046

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646046

Key words

Navigation