Skip to main content
Log in

Thermodynamic properties of alcohols in a micellar phase. Binding constants and partial molar volumes of pentanol in sodium dodecylsulfate micelles at 15, 25, and 35°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities of the ternary system water-sodium dodecylsulfate (NaDS)-pentanol and of the binary systems butanol-octane and pentanol-octane were measured at 15, 25, and 35 °C. The apparent molar volume of pentanol in the ternary system was analyzed using a mass-action model for the alcohol distribution in micellar solutions. The partial molar volume of alcohol bound to the micelles and the ratio between the binding constant and the aggregation number of the surfactant are calculated. The partial molar volume binding constant, is discussed in terms of solubilization sites of the alcohol in the micelles whereas the binding constant is compared with that derived from the Nernstian partition constant previously obtained calorimetrically. From the binding constant and Poisson statistics the distribution function of the number of alcohol molecules per micelle, as a function of the concentration of alcohol and of surfactant, are calculated. The derived distribution functions show that a large amount of alcohol can be solubilized in the micelles so that alcoholic mixed micelles can be predicted when the concentration of pentanol is greater than that of NaDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Shirahama and T. Kashiwabara,J. Coll. Interf. Sci. 36, 65 (1971).

    Google Scholar 

  2. R. Zana, S. Yiv, C. Strazielle, and P. Lianos,J. Coll. Interf. Sci. 80, 208 (1981).

    Google Scholar 

  3. J. B. Rosenholm, T. Drakenberg, and B. Lindman,J. Coll. Interf. Sci. 63, 538 (1978).

    Google Scholar 

  4. P. Lianos and R. Zana,Chem. Phys. Letters 76, 62 (1980).

    Google Scholar 

  5. M. R. Makala, J. B. Rosenholm, and P. Stenius,J. Chem. Soc. Faraday Trans. I 76, 473 (1980).

    Google Scholar 

  6. E. Vikingstad,J. Coll. Interf. Sci. 72, 75 (1979).

    Google Scholar 

  7. J. E. Desnoyers,Pure and Appl. Chem. 54, 1469 (1982).

    Google Scholar 

  8. G. Perron, R. De Lisi, I. Davidson, S. Genereux, and J. E. Desnoyers,J. Coll. Interf. Sci. 79, 432 (1981).

    Google Scholar 

  9. C. U. Hermann, U. Wurtz, and M. Kahlweit,Ber. Busenges. Phys. Chem. 82, 560 (1978).

    Google Scholar 

  10. J. E. Desnoyers, D. Hetu, and G. Perron,J. Solution Chem. 13, 1 (1984).

    Google Scholar 

  11. R. De Lisi, C. Genova, and V. Turco Liveri,J. Coll. Interf. Sci. 95, 428 (1983).

    Google Scholar 

  12. K. Hayase and S. Hayano,Bull. Chem. Soc. Jpn. 50, 83 (1977).

    Google Scholar 

  13. M. Manabe, K. Shirahama, and M. Koda,Bull. Chem. Soc. Jpn. 49, 2904 (1976).

    Google Scholar 

  14. R. Aveyard and A. S. C. Lawrence,Trans. Faraday Soc. 60, 2265 (1964).

    Google Scholar 

  15. S. Kaneshina, H. Kamaya, and I. Ueda,J. Coll. Interf. Sci. 83, 589 (1981).

    Google Scholar 

  16. S. D. Christian, E. E. Tucker, and E. H. Lane,J. Coll. Interf. Sci. 84, 423 (1981).

    Google Scholar 

  17. R. De Lisi and V. Turco Liveri,Gazzetta Chim. Ital. 113, (1983).

  18. J. H. Hogan, R. A. Engel, and F. Stevenson,Anal. Chem. 42, 249 (1970).

    Google Scholar 

  19. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  20. Landolt und Bornstein,Bandteil (A), 1960, p. 197.

  21. G. M. Musbally, G. Perron, and J. E. Desnoyers,J. Coll. Interf. Sci. 48, 494 (1974).

    Google Scholar 

  22. E. D. Goddard and G. C. Benson,Can. J. Chem. 35, 986 (1957).

    Google Scholar 

  23. G. Roux-Desgranges, A. H. Roux, J. P. Grolier, and A. Viallard,J. Solution Chem. 11, 357 (1982).

    Google Scholar 

  24. A. Rohde and E. Sackmann,Ber. Bunsenges. Phys. Chem. 82, 978 (1978).

    Google Scholar 

  25. W. McMillan and J. Mayer,J. Phys. Chem. 13, 176 (1945).

    Google Scholar 

  26. J. T. Edward, P. G. Farrell, and F. Shahidi,Can. J. Chem. 57, 2887 (1979).

    Google Scholar 

  27. H. Hoiland,J. Solution Chem. 5, 773 (1976).

    Google Scholar 

  28. J. M. Corkil, J. F. Goodman, and T. Walker,Trans. Faraday Soc. 63, 768 (1967).

    Google Scholar 

  29. L. A. K. Staneley and B. Spice,J. Chem. Soc. 406 (1952).

  30. C. L. Kwan, S. Atik, and L. A. Singer,J. Am. Chem. Soc. 100, 4783 (1978).

    Google Scholar 

  31. A. Yekta, M. Aikawa, and N. J. Turro,Chem. Phys. Lett. 63, 543 (1979).

    Google Scholar 

  32. N. A. Mazer, G. B. Benedek, and N. C. Carey,J. Phys. Chem. 80, 1075 (1976).

    Google Scholar 

  33. R. Triolo, private communication.

  34. S. Candau and R. Zana,J. Coll. Interf. Sci. 84, 206 (1981).

    Google Scholar 

  35. A. H. Roux, D. Hetu, G. Perron, and J. E. Desnoyers,J. Solution Chem. 13, 1 (1984).

    Google Scholar 

  36. C. de Visser, G. Perron, and J. E. Desnoyers,Can. J. Chem. 55, 856 (1977).

    Google Scholar 

  37. G. Roux, D. Roberts, G. Perron, and J. E. Desnoyers,J. Solution Chem. 9, 629 (1980).

    Google Scholar 

  38. G. Perron, R. De Lisi, I. Davidson, S. Genereux, and J. E. Desnoyers,J. Coll. Interface Sci. 79, 432 (1981).

    Google Scholar 

  39. V. Majer, A. H. Roux, G. Roux-Desgranges, and A. Viallard,Can. J. Chem. 61, 139 (1983).

    Google Scholar 

  40. J. A. Reddick and W. B. Bunger,Organic Solvents, A. Weissberger, ed., (J. Wiley & Sons, New York, 1970).

    Google Scholar 

  41. A. D'Aprano, R. De Lisi, and I. D. Donato,J. Solution Chem. 12, 388 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lisi, R., Genova, C., Testa, R. et al. Thermodynamic properties of alcohols in a micellar phase. Binding constants and partial molar volumes of pentanol in sodium dodecylsulfate micelles at 15, 25, and 35°C. J Solution Chem 13, 121–150 (1984). https://doi.org/10.1007/BF00646044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00646044

Key Words

Navigation