Skip to main content
Log in

A simple statistical mechanical theory for the mutual solubility of fluid mixtures of water and organic solvents under high pressure

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A simple statistical mechanical theory is presented to explain phase diagrams of fluid mixtures with both a lower critical solution temperature and an upper critical solution temperature under pressure. By postulating a temperature dependence for the interaction free energy parameter of the constituent molecules and a pressure dependence for the excess volume, phase diagrams with both lower critical solution temperature, and upper critical solution temperature and their pressure dependence can be reproduced by quadratic surfaces in temperature-concentration-pressure space. The topological aspects of the observed phase diagrams in this space have been related to our theoretical model, and the thermodynamical meaning of the topologies has been interpreted based on our model. Experimental data for the mutual solubility of water and 2-butanol under pressure and that of water and 3-methylpyridine with added salts have been analyzed quantitatively and theoretical parameters are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Moore,Physical Chemistry, 4th ed., Chap. 7 (Prentice-Hall, Englewood Cliffs, NJ, 1972).

    Google Scholar 

  2. E. A. Guggenheim,Thermodyanics, Chap. 4, (North Holland, Amsterdam, 1967).

    Google Scholar 

  3. R. Fowler and E. A. Guggenheim,Statistical Thermodynamics, Chap. 8 (Cambridge University Press, Cambridge, 1952).

    Google Scholar 

  4. W. L. Bragg and E. J. Williams,Proc. Roy. Soc. A145, 699 (1934).

    Google Scholar 

  5. H. A. Bethe,Proc. Roy. Soc. A150, 552 (1935).

    Google Scholar 

  6. J. A. Barker and W. Fock,Disc. Faraday Soc. 15, 188 (1953).

    Google Scholar 

  7. J. C. Wheeler,J. Chem. Phys. 62, 433 (1975).

    Google Scholar 

  8. G. R. Andersen and J. C. Wheeler,J. Chem. Phys. 69, 2082 (1978).

    Google Scholar 

  9. G. M. Schneider, inWater, A Comprehensive Treatise, P. Franks, ed. (Plenum Press, New York, 1973), p. 381.

    Google Scholar 

  10. G. M. Schneider,Chem. Thermodyn. 2, 105 (1978).

    Google Scholar 

  11. G. M. Schneider,Fortschr. Chem. Forsch. 13, 559 (1970).

    Google Scholar 

  12. T. Moriyoshi, S. Kaneshina, and K. Yabumoto,J. Chem. Thermodyn. 7, 537 (1975).

    Google Scholar 

  13. K. Nakanishi, K. Ashitani, and H. Touhara,J. Chem. Thermodyn. 8, 121 (1976).

    Google Scholar 

  14. J. Abe, K. Nakanishi, and H. Touhara,J. Chem. Thermodyn. 10, 483 (1978).

    Google Scholar 

  15. D. Eisenberg and W. Kauzmann,The Structure and Properties of Water, Chap. 3 (Clarendon Press, Oxford, 1969).

    Google Scholar 

  16. K. Nakanishi,Bull. Chem. Soc. Jap. 33, 793 (1960).

    Google Scholar 

  17. G. M. Schneider,Ber. Bunsen. Phys. Chem. 70, 497 (1966).

    Google Scholar 

  18. C. V. Krishnan and H. L. Friedman,J. Solution Chem. 3, 727 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suezaki, Y., Kaneshina, S., Shirahama, K. et al. A simple statistical mechanical theory for the mutual solubility of fluid mixtures of water and organic solvents under high pressure. J Solution Chem 17, 637–651 (1988). https://doi.org/10.1007/BF00645975

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645975

Key words

Navigation