Skip to main content
Log in

Molar heats of transport of dilute aqueous HCl solutions: A potentiometric study

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Heats of transport for dilute aqueous HCl solutions at 25°C have been determined from the measurements of thermoelectric powers of the thermocell

$$(T){\text{ }}Ag{\text{ - }}AgCl/HCl(ag.)/Ag - AgCl{\text{ (T + }}\Delta {\text{T)}}$$

The variation of the heat of transport with concentration has been examined up to 0.04M and the molar heat of transport at infinite dilution obtained by extrapolation. Present experimental results may be summarized by the equation

$${\text{Q}}^ * = {\text{ }}3397 - 3734I^{1/2} {\text{ + }}33610{\text{I}}^{{\text{3/2}}}$$

whereQ * is the heat of transport in cal-mole−1 andI is the ionic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, H. S. Frank, Solvent Models and the Interpretation of Ionization and Solvation Phenomena, inChemical Physics of Ionic Solutions, B. E. Conway and R. G. Barradas, eds. (John Wiley and Sons, Inc., New York, 1966).

    Google Scholar 

  2. P. N. Snowdon and J. C. R. Turner,Trans Faraday Soc. 56, 1812 (1960).

    Google Scholar 

  3. J. N. Agar,Advances in Electrochemistry and Electrochemical Engineering, P. Delahay and C. W. Tobias, eds. (Interscience, New York, 1963), Vol. 3, Chap. 2.

    Google Scholar 

  4. W. G. Breck, G. Cadenhead, and M. Hammerli,Trans. Faraday Soc. 61, 37 (1965).

    Google Scholar 

  5. See, for example; R. A. Robinson and R. H. Stokes,Electrolyte Solutions (Butterworths, London, 1959).

    Google Scholar 

  6. H. J. V. Tyrrell,Diffusion and Heat Flow in Liquids (Butterworths, London, 1961), p. 204.

    Google Scholar 

  7. J. A. Bierlein,J. Chem. Phys. 23, 10 (1955).

    Google Scholar 

  8. J. N. Agar,Trans. Faraday Soc. 56, 776 (1960).

    Google Scholar 

  9. F. H. Horne and T. G. Anderson,J. Chem. Phys. 53, 2321 (1970).

    Google Scholar 

  10. J. Lin and M. A. Christenson,J. Solution Chem. 2, 83 (1973).

    Google Scholar 

  11. J. G. Becsey and J. A. Bierlein,Rev. Sci. Instr. 38, 556 (1967).

    Google Scholar 

  12. J. G. Becsey, L. Berke, and J. R. Callan,J. Chem. Educ. 45, 728 (1968).

    Google Scholar 

  13. L. G. Longsworth,J. Am. Chem. Soc. 54, 2741 (1932).

    Google Scholar 

  14. J. A. Harpst, E. Holt, and P. A. Lyons,J. Phys. Chem. 69, 2333 (1965).

    Google Scholar 

  15. E. Helfand and J. G. Kirkwood,J. Chem. Phys. 32, 857 (1960).

    Google Scholar 

  16. E. Helfand, R. J. Bearman, and V. S. Vaidhyanathan,J. Math. Phys. 4, 160 (1963).

    Google Scholar 

  17. R. J. Bearman and V. S. Vaidhyanathan,J. Chem. Phys. 39, 3411 (1963).

    Google Scholar 

  18. W. G. Breck and J. Lin,Trans. Faraday Soc. 61, 2223 (1965).

    Google Scholar 

  19. C. D. Price, unpublished data, Office of Aerospace Research, U.S. Air Force, ARL Report No. 248 (1961).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Experimental work reported here was performed while J. L. was a Visiting Research Scientist at ARL, WPAFB, Ohio in 1972.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Jl., Bierlein, J.A. & Becsey, J.G. Molar heats of transport of dilute aqueous HCl solutions: A potentiometric study. J Solution Chem 3, 827–836 (1974). https://doi.org/10.1007/BF00645688

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645688

Key words

Navigation