Advertisement

Astrophysics and Space Science

, Volume 174, Issue 1, pp 143–150 | Cite as

Large-amplitude low-frequency electromagnetic waves in pulsar magnetospheres

  • G. S. Lakhina
  • N. L. Tsintsadze
Article

Abstract

Nonlinear propagation of strong low-frequency waves, as emitted by pulsars or compact galactic nuclei at their rotation frequencies, in a magnetized plasma is investigated. It is shown that even rather small amplitude waves can drive electrons to ultrarelativistic energies. In the limit when the electrons are ultrarelativistic but the ions are immobile, two types of circularly polarized waves (i.e., ω± modes) are excited. In the wave zone of the Crab pulsar, both the electric field (∼ 3 V m−1) and the wavelength (∼108 m) of the ω- mode are larger, by an order of magnitude, than those of the ω+ wave mode. Both ω± modes can become modulationally unstable due to their nonlinear interaction with density fluctuations induced by the electrostatic waves.

Keywords

Electromagnetic Wave Small Amplitude Amplitude Wave Wave Mode Nonlinear Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asseo, E.: 1984, in B. McNamara (ed.),Radiation in Plasmas, World Scientific, Singapore, p. 39.Google Scholar
  2. Gunn, J. E. and Ostriker, J. P.: 1969,Astrophys. J. 157, 1395.Google Scholar
  3. Kennel, C. F., Fujimura, F. S., and Pellat, R.: 1979,Space Sci. Rev. 24, 407.Google Scholar
  4. Kotsarenko, N. Y.: 1977,Soviet J. Plasma Phys. 3, 197.Google Scholar
  5. Lakhina, G. S. and Buti, B.: 1981,Astrophys. Space Sci. 79, 25.Google Scholar
  6. Max, C.: 1973,Phys. Fluids 16, 1277.Google Scholar
  7. Max, C. and Perkins, F.: 1972,Phys. Rev. Letters 29, 1731.Google Scholar
  8. Nishikawa, K., Tsintsadze, N. L., and Watanabe, M.: 1980,Soviet J. Plasma Phys. 6, 1302.Google Scholar
  9. Pacini, F.: 1968,Nature 219, 145.Google Scholar
  10. Papuashvili, N. A., Tsikarishvili, E. G., and Tsintsadze, N. L.: 1980,Soviet J. Plasma Phys. 6, 331.Google Scholar
  11. Rees, M. J.: 1971,Nature 229, 312.Google Scholar
  12. Rees, M. J. and Gunn, J. E.: 1974,Monthly Notices Roy. Astron. Soc. 167, 1.Google Scholar
  13. Schmidt, G. D., Angel, J. K., and Beaver, E. A.: 1979,Astrophys. J. 227, 106.Google Scholar
  14. Shukla, P. K., Rao, N. N., Yu, M. Y., and Tsintsadze, N. L.: 1986,Phys. Reports 138, 1.Google Scholar
  15. Stenflo, L.: 1976,Phys. Scripta 14, 320.Google Scholar
  16. Stenflo, L. and Tsintsadze, N. L.: 1979,Astrophys. Space Sci. 64, 513.Google Scholar
  17. Sweeney, G. S. S. and Stewart, P.: 1978,Astron. Astrophys. 66, 139.Google Scholar
  18. Tsikarishvili, E. G., Chagelishvili, G. D., Chedia, O. V., Lominadze, J. G., and Sokhadze, Z. A.: 1988,Astrophys. Space Sci. 149, 255.Google Scholar
  19. Tsintsadze, N. L. and Tskhakaya, D. D.: 1977,Soviet Phys. JETP 45, 252.Google Scholar
  20. Zakharov, V. I.: 1972,Soviet Phys. JETP 35, 908.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • G. S. Lakhina
    • 1
  • N. L. Tsintsadze
    • 2
  1. 1.Indian Institute of GeomagnetismBombayIndia
  2. 2.Institute of PhysicsAcademy of the Georgian S.S.R.TbilisiU.S.S.R.

Personalised recommendations