Skip to main content

Advertisement

Log in

Lewis-Randall to McMillan-Mayer conversion for the thermodynamic excess functions of solutions. Part I. Partial free energy coefficients

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Derivations are given for the thermodynamic relations that are needed to compare experimental thermodynamic excess functions of various kinds with the corresponding functions obtained from models for the solutions by calculations made in the framework of the McMillan-Mayer theory. This contribution extends earlier results. The new results are used to elucidate the behavior of the McMillan-Mayer thermodynamic excess functions of solutions which are very nearly ideal on the mole-fraction scale, for example, isotope mixtures. The study of these ideal systems leads to the conclusion that liquid-structure effects associated with the packing of molecules contribute a negative term to the potential of the force between solute particles in the solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. McMillan and J. E. Mayer,J. Chem. Phys. 13, 276 (1945).

    Google Scholar 

  2. J. C. Poirier,J. Chem. Phys. 21, 965 (1953).

    Google Scholar 

  3. H. L. Friedman,J. Chem. Phys. 32, 1351 (1960).

    Google Scholar 

  4. H. L. Friedman,Ionic Solution Theory (Interscience Publishers, New York, 1962).

    Google Scholar 

  5. H. L. Friedman, Computed Thermodynamic Properties and Distribution Functions for Simple Models of Ionic Solutions, inModern Aspect of Electrochemistry, J. O'M. Bockris and B. E. Conway, eds. (Plenum Press, New York, 1971).

    Google Scholar 

  6. G. N. Lewis and M. Randall,Thermodynamics (McGraw-Hill Book Co., New York, 1923).

    Google Scholar 

  7. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolyte Solutions (Reinhold Publishing Corp., New York, 1958), 3rd ed.

    Google Scholar 

  8. P. S. Ramanathan and H. L. Friedman,J. Chem. Phys. 54, 1086 (1962).

    Google Scholar 

  9. J. C. Rasaiah and H. L. Friedman,J. Chem. Phys. 48, 2742 (1968);J. Chem. Phys. 50, 3965 (1969).

    Google Scholar 

  10. H. L. Friedman and P. S. Ramanathan,J. Phys. Chem. 74, 3756 (1970).

    Google Scholar 

  11. M. Setchenow,Ann. Chim. Phys. 25, 226 (1892).

    Google Scholar 

  12. H. A. C. McKay,Trans. Faraday Soc. 49, 237 (1959).

    Google Scholar 

  13. H. L. Friedman,J. Phys. Chem. 59, 161 (1955).

    Google Scholar 

  14. B. E. Conway, J. E. Desnoyers, and A. C. Smith,Proc. Roy. Soc. A256, 389 (1964).

    Google Scholar 

  15. W. Y. Wen and J. Hung,J. Phys. Chem. 74, 170 (1970).

    Google Scholar 

  16. M. Lucas and A. de Trobriand,J. Phys. Chem. 75, 1803 (1971).

    Google Scholar 

  17. G. R. Haugen and H. L. Friedman,J. Phys. Chem. 60, 1363 (1956).

    Google Scholar 

  18. G. R. Haugen and H. L. Friedman,J. Phys. Chem. 67, 1757 (1963).

    Google Scholar 

  19. G. N. Lewis, M. Randall, K. S. Pitzer, and L. Brewer,Thermodynamics and the Free Energy of Chemical Substances (McGraw-Hill Book Co., New York, 1961), 2nd ed.

    Google Scholar 

  20. H. L. Friedman, C. V. Krishnan, and C. Jolicoeur, Ionic Interactions in Water, Annals of the New York Academy of Sciences, in press.

  21. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolyte Solutions (Reinhold Publishing Corp., New York, 1958), 3rd ed., Eq. (8-7-22).

    Google Scholar 

  22. E. A. Guggenheim,Thermodynamics (North-Holland Publishing Co., Amsterdam, 1957), 3rd ed.

    Google Scholar 

  23. J. H. Hildebrand and R. L. Scott,The Solubility of Nonelectrolytes (Reinhold Publishing Co., New York, 1950), 3rd ed.

    Google Scholar 

  24. T. L. Hill,J. Chem. Phys. 30, 93 (1959).

    Google Scholar 

  25. D. Stigter,J. Phys. Chem. 64, 118 (1960).

    Google Scholar 

  26. J. J. Kozak, W. S. Knight, and W. Kauzmann,J. Chem. Phys. 48, 675 (1968).

    Google Scholar 

  27. J. G. Kirkwood and F. P. Buff,J. Chem. Phys. 19, 774 (1951).

    Google Scholar 

  28. B. Zimm,J. Chem. Phys. 21, 934 (1953); F. P. Buff and R. Brout,J. Chem. Phys. 23, 458 (1955).

    Google Scholar 

  29. D. G. Hall,Trans. Faraday Soc. 67, 2516 (1971).

    Google Scholar 

  30. D. G. Hall,Trans. Faraday Soc. 68, 25 (1972).

    Google Scholar 

  31. H. L. Friedman,Ionic Solution Theory (Interscience Publishers, New York, 1962), Eq. (18.50).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, H.L. Lewis-Randall to McMillan-Mayer conversion for the thermodynamic excess functions of solutions. Part I. Partial free energy coefficients. J Solution Chem 1, 387–412 (1972). https://doi.org/10.1007/BF00645603

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645603

Key words

Navigation