Abstract
Activity coefficients for HBr in HBr−NH4Br−H2O at 25°C have been measured at constant total molalities of 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, and 3.0 mole-kg−1. The electromotive-force measurements of cells containing the hydrogen and the silver-silver bromide electrode were used to determine the variation of the logarithm of the activity coefficient of hydrobromic acid with the change in the amount of ammonium bromide in the solution. The results have been interpreted in terms of the Pitzer treatment of mixed electrolytes and are compared with those of Harned and Hamer for the HBr−KBr−H2O and HBr−NaBr−H2O systems. It is found that Harned's rule is a good description for both electrolytes.
Similar content being viewed by others
References
K. S. Pitzer and J. J. Kim,J. Am. Chem. Soc. 96, 5701 (1974).
L. A. Bromley,Am. Inst. Chem. Eng. J. 19, 313 (1973).
E. A. Guggenheim and J. C. Turgeon,Trans. Faraday Soc. 51, 747 (1955).
E. A. Guggenheim,Trans. Faraday. Soc. 62, 3446 (1966).
R. A. Robinson, R. N. Roy, and R. G. Bates,J. Solution Chem. 3, 837 (1974).
H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolytic Solutions, 3rd ed. (Reinhold, New York, 1958), p. 600.
H. S. Harned and R. A. Robinson,Multicomponent Electrolyte Solutions (Pergamon, Oxford, 1968), p. 36.
G. N. Lewis and M. Randall,Thermodynamics, revised ed. by K. S. Pitzer and L. Brewer (McGraw-Hill, New York, 1961), Chap. 34.
J. E. Vance,J. Am. Chem. Soc. 55, 4518 (1933).
H. S. Harned and W. J. Hamer,J. Am. Chem. Soc. 55, 2194, 4496 (1933).
H. S. Harned,J. Phys. Chem. 63, 1299 (1959);64, 112 (1960);67, 1739 (1963).
H. A. C. McKay,Trans. Faraday Soc. 51, 903 (1955).
A. S. Keston,J. Am. Chem. Soc. 57, 1671 (1935).
R. N. Roy, R. A. Robinson, and R. G. Bates,J. Chem. Thermodyn. 5, 559 (1973).
R. G. Bates,Determination of pH, 2nd ed. (Wiley, New York, 1973), p. 331.
R. Gary, R. G. Bates, and R. A. Robinson,J. Phys. Chem. 68, 1186 (1964).
R. G. Bates (ed.),Nat. Bur. Stand. (U.S.) Tech. Note, No. 271, 28 (1965).
R. G. Bates,Determination of pH, 2nd ed. (Wiley, New York, 1973), p. 283.
H. S. Harned,J. Am. Chem. Soc. 57, 1865 (1935).
W. J. Biermann and R. S. Yamasaki,J. Am. Chem. Soc. 77, 241 (1955).
H. S. Harned, A. S. Keston, and J. G. Donelson,J. Am. Chem. Soc. 58, 989 (1936).
H. B. Hetzer, R. A. Robinson, and R. G. Bates,J. Phys. Chem. 66, 1423 (1962).
R. G. Bates et al.,J. Chem. Phys. 25, 361 (1956); see also R. G. Bates and V. E. Bower,J. Res. Nat. Bur. Stand., Sect. A 53, 283 (1954).
R. M. Rush and J. S. Johnson,J. Phys. Chem. 72, 767 (1968).
G. Scatchard,J. Am. Chem. Soc. 83, 2636 (1961).
K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).
K. S. Pitzer and G. Mayorga,J. Phys. Chem. 77, 2300 (1973).
P. J. Reilly and R. H. Wood,J. Phys. Chem. 73, 4292 (1969).
P. J. Reilly, R. H. Wood, and R. A. Robinson,J. Phys. Chem. 75, 1305 (1971).
H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolytic Solutions, 3rd ed. (Reinhold, New York, 1958), p. 608.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Roy, R.N., Swensson, E.E. Thermodynamic properties of strong electrolytes: The HBr−NH4Br−H2O system at 25°C. J Solution Chem 4, 431–440 (1975). https://doi.org/10.1007/BF00645575
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00645575