Journal of Solution Chemistry

, Volume 9, Issue 6, pp 415–442 | Cite as

The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300°C

  • Peter R. Tremaine
  • Jacques C. LeBlanc


The solubility of carefully characterized magnetite, Fe3O4, in dilute aqueous solutions saturated with H2 has been measured at temperatures from 100 to 300°C in a flow apparatus. Solution compositions included either HCl or NaOH molalities of up to 1 and 40 mmole-kg−1, respectively, and H2 molalities of 0.0779, 0.779, and 8.57 mmole-kg−1. The dependence of the equilibrium solubility on the pH and reduction potential were fitted to a scheme of soluble ferrous and ferric species consisting of Fe2+, FeOH+, Fe(OH)2, Fe(OH) 3 , Fe(OH)3, and Fe(OH) 4 . Solubility products from the fit, corresponding to the reactions
$$\tfrac{1}{3}Fe_3 O_4 + (2 - b)H^ + + \tfrac{1}{3}H_2 \rightleftharpoons Fe(OH)_b^{2 - b} + (4/3 - b)H_2 O$$
$$\tfrac{1}{3}Fe_3 O_4 + (3 - b)H^ + \rightleftharpoons Fe(OH)_b^{3 - b} + \tfrac{1}{6}H_2 + (4/3 - b)H_2 O$$
were used to derive thermodynamic constants for each species. The extrapolared value for the Gibbs energy of formation of Fe2+ at 25°C is −88.92±2.0 kJ-mole−1, consistent with standard reduction potentials in the range Eo(Fe2+)=−0.47±0.01 V. The temperature coefficient of the equilibrium Fe molality, (∂m(Fe, sat.)/∂T)m(H2).m(NaOH), changes from negative to positive as the NaOH molality is increased to the point where Fe(OH) 3 and Fe(OH) 4 predominate.

Key words

Magnetite iron oxide water hydrolysis hydrothermal solutions solubility stability diagram corrosion Gibbs energy entropy high temperature ferrous ion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. R. Tremaine, R. von Massow, and G. R. Shierman,Thermochim. Acta 19, 287 (1977).Google Scholar
  2. 2.
    F. H. Sweeton and C. F. Baes,J. Chem. Thermodyn. 2, 479 (1970).Google Scholar
  3. 3.
    G. A. Kanert, G. W. Gray, and W. G. Baldwin,The Solubility of Magnetite in Basic Solutions at Elevated Temperatures, Atomic Energy of Canada Ltd., Report AECL-5528 (1976).Google Scholar
  4. 4.
    I. Lambert, P. Beslu, A. Lalet, and J. Montel, inThermodynamics of Nuclear Materials 1979 (International Atomic Energy Agency, Vienna, 1979), paper IAEA-SM-236/12, in press.Google Scholar
  5. 5.
    M. A. Styrikovich, O. F. Martynova, I. F. Kobyakov, V. L. Men'skikova, and M. I. Reznikov,Therm. Eng. 19, 127 (1972).Google Scholar
  6. 6.
    I.-M. Chou and H. P. Eugster,Am. J. Sci. 277, 1296 (1977).Google Scholar
  7. 7.
    G. R. Helz, Ph.D. Thesis, Pennsylvania State University (1971).Google Scholar
  8. 8.
    D. A. Crerar, N. J. Susak, M. Boresik, and S. Schwartz,Geochim. Cosmochim. Acta 42, 1427 (1978).Google Scholar
  9. 9.
    P. R. Tremaine and J. C. LeBlanc,J. Chem. Thermodyn., in press.Google Scholar
  10. 10.
    G. K. Johnson and J. E. Bauman, Jr.,Inorg. Chem. 17, 2774 (1978).Google Scholar
  11. 11.
    H. Tamura, K. Goto, and M. Nagayama,J. Inorg. Nucl. Chem. 38, 11, 3 (1976).Google Scholar
  12. 12.
    J. Smiltens,J. Chem. Phys. 20, 990 (1952).Google Scholar
  13. 13.
    N. S. McIntyre and D. G. Zetaruk,Anal. Chem. 49, 1521 (1977).Google Scholar
  14. 14.
    Y. L. Sandler and R. H. Kunig,Nucl. Sci. Eng. 64, 866 (1977).Google Scholar
  15. 15.
    P. V. Balakrishnan,Can. J. Chem. Eng. 55, 357 (1977).Google Scholar
  16. 16.
    D. M. Himmelblau,J. Chem. Eng. Data 5, 10 (1960).Google Scholar
  17. 17.
    A. E. Harvey, Jr., J. A. Smart, and E. S. Amis,Anal. Chem. 27, 2, 6 (1955).Google Scholar
  18. 18.
    C. F. Baes, Jr., and R. E. Mesmer,The Hydrolysis of Cations (Wiley, New York, 1976).Google Scholar
  19. 19.
    W. L. Marshall,Inorg. Nucl. Chem. 37, 2155 (1975).Google Scholar
  20. 20.
    W. L. Marshall and E. V. Jones,J. Phys. Chem. 70, 4028 (1966).Google Scholar
  21. 21.
    G. Olofsson and L. G. Hepler,J. Solution Chem. 4, 127 (1975).Google Scholar
  22. 22.
    J. W. Larson, P. Cerutti, H. K. Garber, and L. G. Hepler,J. Phys. Chem. 72, 2902 (1968).Google Scholar
  23. 23.
    D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm,Selected Values of Chemical Thermodynamic Properties, U.S. Natl. Bur. Stand. Tech. Notes 270–3 (1968) and 270–4 (1969).Google Scholar
  24. 24.
    P. Schindler,Advances in Chemistry, R. F. Gould, ed. (Am. Chem. Soc., 1967), Vol. 67, Chapter 9.Google Scholar
  25. 25.
    K. K. Kelley and E. G. King,Entropies of the Elements and Inorganic Compounds, U.S. Bur. Mines Bull. 592 (1961).Google Scholar
  26. 26.
    E. D. Eastman and R. M. Evans,J. Am. Chem. Soc. 46, 888 (1924).Google Scholar
  27. 27.
    D. R. Stull and H. Prophet, eds.,JANAF Thermochemical Tables, Natl. Stand. Ref. Data Ser., U.S. Natl. Bur. Stand., Vol. 37 (1971).Google Scholar
  28. 28.
    K. K. Kelley,High-Temperature Heat Content, Heat Capacity, and Entropy Data for the Elements and Inorganic Compounds, U.S. Bur. Mines Bull. 584 (1960).Google Scholar
  29. 29.
    H. C. Helgeson and D. H. Kirkham,Am. J. Sci. 274, 1089 (1974).Google Scholar
  30. 30.
    S. W. Benson,Thermochemical Kinetics (Wiley, New York, 1968).Google Scholar
  31. 31.
    W. M. Latimer,Oxidation Potentials, 2nd edn. (Prentice-Hall, New Jersey, 1952).Google Scholar
  32. 32.
    W. A. Patrick and W. E. Thompson,J. Am. Chem. Soc. 75, 1184 (1953).Google Scholar
  33. 33.
    H. C. Ko and L. G. Hepler,J. Chem. Eng. Data 8, 59 (1963).Google Scholar
  34. 34.
    T. Hurlen,Acta Chem. Scand. 14, 1533 (1960).Google Scholar
  35. 35.
    E. E. Bernarducci, L. R. Morss, and A. R. Miksztal,J. Solution Chem. 8, 717 (1979).Google Scholar
  36. 36.
    R. E. Mesmer,Inorg. Chem. 10, 857 (1971).Google Scholar
  37. 37.
    B. O. A. Hedstrom,Ark. Kem. 5, 457 (1953).Google Scholar
  38. 38.
    D. L. Leussing and I. M. Kolthoff,J. Am. Chem. Soc. 75, 2476 (1953).Google Scholar
  39. 39.
    B. Shrager,Chem. News 138, 354 (1929).Google Scholar
  40. 40.
    K. H. Gayer and L. Woontner,J. Phys. Chem. 60, 1569 (1956).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Peter R. Tremaine
    • 1
  • Jacques C. LeBlanc
    • 1
  1. 1.Research Chemistry Branch, Whiteshell Nuclear Research EstablishmentAtomic Energy of Canada LimitedPinawaCanada

Personalised recommendations