Skip to main content
Log in

Conductance behavior of long-chain amine hydrochlorides in 2-methoxyethanol

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solution behavior of octyl-, decyl-, dodecyl-, tetradecyl-, hexadecyl-, and octadecylamine hydrochloride in 2-methoxyethanol at 25°C was determined by conductance techniques. Data were evaluated by the Fuoss-Shedlovsky, Fuoss-Onsager, and the Fernández-Prini expanded form of the Pitts and Fuoss-Hsia equations. As expected, the limiting equivalent conductances of the electrolytes decrease as the crystallographic radii of the cations of these salts increase. Little difference is observed in the extent of association of the six long-chain quaternary ammonium salts in 2-methoxyethanol; these salts appear to behave as simple 1∶1 electrolytes within the concentration range of 1–28×10−4 M. Included in the present study is a discussion of the previously investigated conductance behavior of these colloidal electrolytes in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Persoz,Traite Theoretique et Practique de l'Impression des Tissues, Vol. 1 (1846), p. 354.

  2. J. Robbins,Ions in Solution I (Clarendon Press, Oxford, 1972).

    Google Scholar 

  3. M. J. Vold and R. D. Vold, inColloid Chemistry, H. H. Sisler and C. A. VanderWerf, eds. (Reinhold Publishing, 1964).

  4. M. E. L. McBain and E. Hutchinson,Solubilization and Related Phenomena (Academic Press, New York, 1955).

    Google Scholar 

  5. K. J. Mysels,Introduction to Colloid Chemistry (Interscience Publishers, New York, 1959).

    Google Scholar 

  6. K. J. Mysels and P. Muskerjec,National Standard Reference Data System Compilation of Critical Micelle Concentrations (1969).

  7. F. Tokiwa and K. Ohki,J. Phys. Chem. 71, 1343 (1967).

    Google Scholar 

  8. E. J. Fendler and J. H. Fendler,Adv. Phys. Org. Chem. 8, 271 (1970).

    Google Scholar 

  9. E. H. Cordes and R. B. Dunlap,Acc. Chem. Res. 2, 329 (1969).

    Google Scholar 

  10. M. E. L. McBain, W. B. Dye, and S. A. Johnston,J. Am. Chem. Soc. 61, 3210 (1939).

    Google Scholar 

  11. M. E. L. McBain,J. Colloid Sci. 10, 223 (1955).

    Google Scholar 

  12. J. H. Fendler and E. J. Fendler,Catalysis in Micellar and Macromolecular Systems (Academic Press, New York,1975).

    Google Scholar 

  13. R. A. Jones,Aldrichimica Acta 9, 35 (1976).

    Google Scholar 

  14. A. W. Ralston,Fatty Acids and Their Derivatives (John Wiley and Sons, New York,1948).

    Google Scholar 

  15. ARQUAD Quaternary Ammonium Salts, Bulletin No. 72-12, Armak Company, Chicago, Illinois (1972).

  16. Specialty Quats, Bulletin No. 1286, Ashland Chemical Company, Columbus,Ohio.

  17. A. W. Ralston and C. W. Hoerr,J. Am. Chem. Soc. 65, 976 (1943).

    Google Scholar 

  18. D. Stigter and K. J. Myselo,J. Phys. Chem. 59, 45 (1955).

    Google Scholar 

  19. L. Onsager,Phys. Z. 28, 277 (1927).

    Google Scholar 

  20. T. Shedlovsky,J. Franklin Inst. 255, 739 (1938); R. M. Fuoss and T. Shedlovsky,J. Am. Chem. Soc. 71, 1496 (1949).

    Google Scholar 

  21. R. M. Fuoss and F. Accascina,Electrolytic Conductance (Interscience, New York, 1959); R. M. Fuoss and L. Onsager,J. Phys. Chem. 61,668 (1957).

    Google Scholar 

  22. J. E. Desnoyers, M. Arel, and P.-A. Leduc,Can. J. Chem. 47, 547 (1969).

    Google Scholar 

  23. R. Fernández-Prini and J. E. Prue,Z. Phys. Chem. (Leipzig) 228, 373 (1965); R. Fernández-Prini,Trans. Faraday Soc. 65, 3311 (1969).

    Google Scholar 

  24. E. Pitts, B. E. Tabor, and J. Daly,Trans. Faraday Soc. 65, 849 (1969); E. Pitts,Proc. Roy. Soc. London, Ser. A 217, 43 (1953).

    Google Scholar 

  25. R. M. Fuoss and K.-L. Hsia,Proc. Nat. Acad. Sci. USA 57, 1550 (1967); K.-L. Hsia and R. M. Fuoss,J. Am. Chem. Soc. 90, 3055 (1968).

    Google Scholar 

  26. G. A. Swartz and B. J. Barker,Talanta 22, 773 (1975).

    Google Scholar 

  27. B. J. Barker, G. A. Schwartz, and M. E. Naines,Anal. Chim. Acta 81, 433 (1976).

    Google Scholar 

  28. A. A. Robertson,Tappi 53, 1331 (1970);Chem.Abstr. 73, 67799t.

    Google Scholar 

  29. K. Bowden, J. G. Irving,and M. J. Price,Can. J. Chem. 46, 3903 (1968).

    Google Scholar 

  30. H. Sadek, Th. F. Tadros, and A. A. El-Harakani,Electrochim. Acta 16, 339 (1971).

    Google Scholar 

  31. R. J. Schlveter and R. L. Peters,Enzymologia 31, 239 (1966);Chem.Abstr. 66, 16753w.

    Google Scholar 

  32. H. Uehara, M. Manabe, and R. Matura,Mem. Fac. Sci., Kyushu Univ. Ser. C 8, 55 (1972);Chem. Abstr. 77, 7689e.

    Google Scholar 

  33. A. W. Ralston, E. J. Hoffman, C. W. Hoerr, and W. M. Selby,J. Am. Chem. Soc. 63, 1598 (1941).

    Google Scholar 

  34. A. W. Ralston and C. W. Hoerr,J. Am. Chem. Soc. 64, 772 (1942).

    Google Scholar 

  35. B. J. Barker and J. A. Caruso,J. Am. Chem. Soc. 93, 1341 (1971).

    Google Scholar 

  36. B. J. Barker, J. Rosenfarb, and E. Z. Riesen,J. Solution Chem. 4, 571 (1975).

    Google Scholar 

  37. G. V. Merken, H. P. Thun, and F. Verbeek,Electrochim. Acta 19, 947 (1974);21, 11 (1976).

    Google Scholar 

  38. C. De Rossi, B. Sesta, M. Battistini, and S. Petrucci,J. Am. Chem. Soc. 94, 2961 (1972).

    Google Scholar 

  39. G. C. Pellacani, G. Peyronel, L. Manabue, and G. Marcotrigiano,J. Inorg. Nucl. Chem. 37, 1551 (1975).

    Google Scholar 

  40. R. L. Kay,J. Am. Chem. Soc. 82, 2099 (1960).

    Google Scholar 

  41. J. L. Hawes and R. L. Kay,J. Phys. Chem. 69, 2420 (1965).

    Google Scholar 

  42. B. J. Barker and P. G. Sears,J. Phys. Chem. 78, 2687 (1974).

    Google Scholar 

  43. J. Rosenfarb and J. A. Caruso,J.Solution Chem. 5, 345 (1976).

    Google Scholar 

  44. B. J. Barker, H. L. Huffman,Jr., and P. G. Sears,J. Phys. Chem. 78, 2689 (1974).

    Google Scholar 

  45. R. J. Lemire and M. W. Lister,J. Solution Chem. 5, 171 (1976).

    Google Scholar 

  46. T. L. Broadwater and D. F. Evans,J. Solution Chem. 3, 757 (1974).

    Google Scholar 

  47. A. W. Ralston, C. W. Hoerr, and E. J. Hoffman,J. Am. Chem. Soc. 64, 97 (1942).

    Google Scholar 

  48. K. A. Wright, A. D. Abbott, V. Sivertz, and H. V. Tartar,J. Am. Chem. Soc. 61, 549 (1939).

    Google Scholar 

  49. J. W. McBain and M. D. Betz,J. Am. Chem. Soc. 57, 1905 (1935).

    Google Scholar 

  50. D. G. Oakenfull and D. E. Fenwick,J. Phys. Chem. 78,1759 (1974).

    Google Scholar 

  51. T. L. Broadwater and D. F. Evans,J. Phys. Chem. 73, 3985 (1969).

    Google Scholar 

  52. S. Paljk, C. Klofutar, and M. Zumer,J. Inorg. Nucl. Chem. 38, 293 (1976).

    Google Scholar 

  53. K. Tamaki, Y. Ohara, H. Kurachi, M. Akiyama, and H. Odaki,Bull. Chem. Soc. Jpn. 47, 384 (1974).

    Google Scholar 

  54. K. A. Wright and H. V. Tartar,J. Am. Chem. Soc. 61, 544 (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, B.J., Rosenfarb, J. & Mullin, T. Conductance behavior of long-chain amine hydrochlorides in 2-methoxyethanol. J Solution Chem 6, 513–523 (1977). https://doi.org/10.1007/BF00645417

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645417

Key words

Navigation