Skip to main content
Log in

Retrieval of interaction coefficients from total vapor pressure-composition data

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A numerical-derivative method, employing a running cubic spline, has been developed to infer coefficients in power series expansions of total vapor pressure vs. composition data. The technique makes it possible to determine values of the coefficients individually, avoiding a generic problem in least squares analysis, viz., that the regression parameters are highly coupled and that their derived values depend strongly on the number of constants used in fitting data. The numerical derivative method also indicates when errors of measurements will preclude the determination of meaningful values of higher-order terms in polynomical representations of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Deming,Statistical Adjustment of Data, (Dover, New York, 1964).

    Google Scholar 

  2. W. E. Wentworth,J. Chem. Educ. 42, 96, 162 (1965).

    Google Scholar 

  3. S. D. Christian and E. E. Tucker,American Laboratory 14 (8), 36 (1982).

    Google Scholar 

  4. S. D. Christian and E. E. Tucker,American Laboratory 14(9), 31 (1982).

    Google Scholar 

  5. D. D. McCracken and W. S. Dorn,Numerical Methods and Fortran Programming, (Wiley, New York, 1964).

    Google Scholar 

  6. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, (Wiley, New York, 1964).

    Google Scholar 

  7. J. J. Kozak, W. S. Knight, and W. Kauzmann,J. Chem. Phys. 48, 675 (1968).

    Google Scholar 

  8. H. L. Friedman and C. V. Krishnan,J. Solution Chem. 2, 119 (1973).

    Google Scholar 

  9. F. Franks, inWater: A Comprehensive Treatise, F. Franks, ed., Vol. 4 (Plenum Press, New York, 1973), Chap. 1.

    Google Scholar 

  10. B. Y. Okamoto, R. H. Wood, and P. J. Thompson,J. Chem. Soc. Faraday Trans. I 74, 1990 (1978).

    Google Scholar 

  11. A. Michels, J. C. Abels, C. A. Ten Seldam, and W. De Graaff,Physica 26, 381 (1960).

    Google Scholar 

  12. R. W. Hamming,Numerical Methods for Scientists and Engineers, (McGraw-Hill, New York, 1962), Chap. 19.

    Google Scholar 

  13. S. D. Christian, E. H. Lane, and E. E. Tucker,J. Solution Chem. 10, 181 (1981).

    Google Scholar 

  14. L. Nord, E. E. Tucker, and S. D. Christian,J. Solution Chem. 13, 849 (1984).

    Google Scholar 

  15. S. D. Christian and E. E. Tucker,American Laboratory 15(9), 35 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christian, S.D., Tucker, E.E. & Nord, L. Retrieval of interaction coefficients from total vapor pressure-composition data. J Solution Chem 13, 869–876 (1984). https://doi.org/10.1007/BF00645333

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645333

Key words

Navigation