Astrophysics and Space Science

, Volume 36, Issue 2, pp 383–405 | Cite as

Wave-trains in the solar wind

III: Alfvén Waves in the azimuthally-dependent interplanetary medium
  • Arne K. Richter


Applying an Alfvén-Wave-Extended-QRH-approximation and the method of characteristics, we solve the equations of motion for outwardly propagating Alfvén waves analytically for three different cases of an azimuthal dependence of the background solar wind, (a) for a pure fast-slow stream configuration, (b) for the situation where the high-speed stream originates from a diverging magnetic field region, and (c) for the case of (b) and an initially decreasing density configuration (‘coronal hole’). The reaction of these waves on the background state as well as mode-mode coupling effects are neglected. These three solar wind models are discussed shortly. For the superimposed Alfvén waves we find, on an average, that there is a strong azimuthal dependence of all relevant wave parameters which, correlated with the azimuthal distributions of the solar wind variables, leads to good agreements with observations. The signature of high-speed streams and these correlations could clearly indicate solar wind streams originating from ‘coronal holes’. Contrary to the purely radial dependent solar wind, where outwardly propagating Alfvén waves are exclusively refracted towards the radial direction, we now find a refraction nearly perpendicular to the direction of the interplanetary magnetic field in the compression region and closely towards the magnetic field direction down the trailing edge and in the low-speed regime.


Solar Wind Coronal Hole Interplanetary Magnetic Field Wind Model Magnetic Field Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alazraki, G. and Couturier, P.: 1971,Astron. Astrophys. 13, 380.Google Scholar
  2. Altschuler, M. D., Trotter, D. E., and Orrall, F. Q.: 1972,Solar Phys. 26, 354.Google Scholar
  3. Barnes, A. and Hollweg, J. V.: 1974,J. Geophys Res. 79, 2302.Google Scholar
  4. Belcher, J. W.: 1971,Astrophys. J. 168, 509.Google Scholar
  5. Belcher, J. W. and Davis, L., Jr.: 1971,J. Geophys. Res. 76, 3534.Google Scholar
  6. Burlaga, L. F.: 1968,Solar Phys. 4, 67.Google Scholar
  7. Burlaga, L. F.: 1972,Solar Wind, NASA Scienific and Technical Information Office, Washington, D.C., p. 309.Google Scholar
  8. Burlaga, L. F., Ogilvie, K. W., Fairfield, D. H., Montgomery, M. D., and Bame, S. J.: 1971,Astrophys. J. 164, 137.Google Scholar
  9. Courant, R. and Hilbert, D.: 1962,Methods of Mathematical Physics, Interscience Publishers, New York, Vol. II, p. 62.Google Scholar
  10. Daily, W. D.: 1973,J. Geophys. Res. 78, 2043.Google Scholar
  11. Dobrovolny, M.: 1974, ‘Alfvén Wave Instability in the Solar Wind’, presented at the Asilomar Solar Wind Conference.Google Scholar
  12. Fisk, L. A. and Sari, J. W.: 1973,J. Geophys. Res. 78, 6729.Google Scholar
  13. Garrett, H. B., Dessler, A. J., and Hill, T. W.: 1974, ‘Influence of Solar-Wind Variability on Geomagnetic Activity’, submitted toJ. Geophys. Res. Google Scholar
  14. Goldstein, M. L. and Eviatar, A.: 1973,Astrophys. J. 179, 627.Google Scholar
  15. Gosling, J. T., Hundhausen, A. J., Pizzo, V., and Asbridge, J. R.: 1972,J. Geophys. Res. 77, 5442.Google Scholar
  16. Hollweg, J. V.: 1971,J. Geophys. Res. 76, 5155.Google Scholar
  17. Hollweg, J. V.: 1972,Cosmic Electrodyn. 2, 423.Google Scholar
  18. Hollweg, J. V.: 1973,J. Geophys. Res. 78, 3643.Google Scholar
  19. Hollweg, J. V.: 1974,J. Geophys. Res. 79, 1539.Google Scholar
  20. Hundhausen, A. J.: 1970,Rev. Geophys. Space Phys. 8, 729.Google Scholar
  21. Jokipii, J. R.: 1973,Astrophys. J. 182, 585.Google Scholar
  22. Krieger, A. S., Timothy, A. F., and Roelof, E. C.: 1973,Solar Phys. 29, 505.Google Scholar
  23. Martin, R. N., Belcher, J. W., and Lazarus, A. J.: 1973,J. Geophys. Res. 78, 3653.Google Scholar
  24. Matsuda, T. and Sakurai, T.: 1972,Cosmic Electrodyn. 3, 97.Google Scholar
  25. Munro, R. H. and Withbroe, G. L.: 1972,Astrophys. J. 176, 511.Google Scholar
  26. Neupert, W. M. and Pizzo, V.: 1973, ‘Solar Coronal Holes as Sources of Recurrent Geomagnetic Disturbances’, submitted toJ. Geophys. Res. Google Scholar
  27. Olbers, D. J. and Richter, A. K.: 1973,Astrophys. Space Sci. 20, 373.Google Scholar
  28. Richter, A. K. and Olbers, D. J.: 1974,Astrophys. Space Sci. 26, 95.Google Scholar
  29. Sakurai, T.: 1971,Cosmic Electrodyn. 1, 460.Google Scholar
  30. Siscoe, G. L.: 1972,J. Geophys. Res. 77, 27.Google Scholar
  31. Urch, I. H.: 1972,Cosmic Electrodyn. 3, 316.Google Scholar
  32. Völk, H. J., Morfill, G., Alpers, W., and Lee, M. A.: 1974,Astrophys. Space Sci. 26, 267.Google Scholar
  33. Wilcox, J. M. and Ness, N. F.: 1965,J. Geophys. Res. 70, 5793.Google Scholar

Copyright information

© D. Reidel Publishing Company 1975

Authors and Affiliations

  • Arne K. Richter
    • 1
  1. 1.Institut für Reine und Angewandte KernphysikUniversität KielKielWest Germany

Personalised recommendations