Advertisement

Solar Physics

, Volume 149, Issue 1, pp 63–72 | Cite as

Gravitational ballooning instability of prominences

  • H. R. Strauss
  • D. W. Longcope
Article

Abstract

Prominences can be unstable to a gravitational ballooning instability of the Rayleigh-Taylor type. A two-dimensional generalized Kippenhahn-Schlüter prominence equilibrium is constructed. Its stability to ideal, three-dimensional, short-wavelength line-tied perturbations is analyzed. The instability requires a critical vertical density gradient. For a given magnetic field strength, the instability is sensitive to the angle at which the magnetic field lines cross the prominence. An approximate, sufficient, threshold condition is consistent with typical prominence parameters.

Keywords

Magnetic Field Field Strength Density Gradient Field Line Magnetic Field Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anzer, U.: 1969,Solar Phys. 8, 37.Google Scholar
  2. Bernstein, I. B., Frieman, E. A., Kruskal, M. D., and Kulsrud, R. M.: 1958,Proc. Roy. Soc. London 244A, 17.Google Scholar
  3. Connor, J. W., Hastie, R. J., and Taylor, J. B.: 1979,Proc. Roy. Soc. London 365A, 1.Google Scholar
  4. Einaudi, G. and Van Hoven, G.: 1983,Solar Phys. 88, 163.Google Scholar
  5. Goedbloed, J. P.: 1971,Physica 53, 412.Google Scholar
  6. Hagyard, M. J.: 1988,Solar Phys. 115, 107.Google Scholar
  7. Hameiri, E., Laurence, P., and Mond, M.: 1991,J. Geophys. Res. 96, 1513.Google Scholar
  8. Kippenhahn, R. and Schlüter, K.: 1957,Z. Naturforsch. 12a, 833.Google Scholar
  9. Martin, S. F.: 1990, in V. Ruždjak and E. Tandberg-Hanssen (eds.),Dynamics of Quiescent Prominences, Springer-Verlag, Berlin, p. 1.Google Scholar
  10. Mestel, L. and Strittmatter, P.: 1967,Montly Notices Roy. Astron. Soc. 137, 95.Google Scholar
  11. Otani, N. and Strauss, H.: 1988,Astrophys. J. 325, 468.Google Scholar
  12. Paris, R.: 1987,Phys. Fluids 30, 102.Google Scholar
  13. Priest, E. R.: 1990, in V. Ruždjak and E. Tandberg-Hanssen (eds.),Dynamics of Quiescent Prominences, Springer-Verlag, Berlin, p. 150.Google Scholar
  14. Galindo-Trejo, J. and Schindler, K.: 1984,Astrophys. J. 277, 422.Google Scholar
  15. Strauss, H.: 1977,Phys. Fluids 20, 1354.Google Scholar
  16. Strauss, H.: 1989,Geophys. Res. Letters 16, 219.Google Scholar
  17. Strauss, H., Park, W., Monticello, D. A., White, R. B., Jardin, S. C., Chance, M. S., Todd, A. M. M., and Glasser, A. H.: 1980,Nucl. Fusion 20, 638.Google Scholar
  18. Zirin, H.: 1990,Astrophysics of the Sun, Cambridge University Press, Cambridge.Google Scholar
  19. Zirker, J.: 1989,Solar Phys. 119, 341.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • H. R. Strauss
    • 1
  • D. W. Longcope
    • 1
  1. 1.New York UniversityNew YorkUSA

Personalised recommendations