Astrophysics and Space Science

, Volume 236, Issue 2, pp 201–214 | Cite as

Magnetic reconnection induced by Kelvin Helmholtz instability

  • J. C. Yong
  • S. H. Oh
  • K. Min
Article

Abstract

MHD simulation study is performed to investigate magnetic reconnection induced by the Kelvin Helmholtz instability in the initially sheared magnetic field geometry as well as in the uniform magnetic field geometry. Slow mode rarefaction structures seen in the uniform field case are not observed in the sheared field case. Dynamo action is less prominent and the conversion of plasma flow energy into the other forms of energy is also smaller in the sheared field case than in the uniform field case. Momentum transport is mostly due to the hydrodynamic stress in the sheared field case, while the electromagnetic stress is dominant in the uniform field case. The long term evolutions are also markedly different in the two cases. In the uniform field geometry, the magnetic field lines twisted due to the Kelvin Helmholtz instability become reconnected and flattened so that they resume the straight field line structure which resembles the initial field geometry. The magnetic field, however, is not uniform with smaller intensity in the central region where the pressure balance is partially maintained by the enhanced thermal pressure. In the initially sheared magnetic field geometry, magnetic reconnection continues to operate until the end of the simulation and the conversion of the flow energy into the thermal energy is still seen.

Keywords

Field Line Magnetic Reconnection Magnetic Field Line Uniform Magnetic Field Momentum Transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balbus, S.A. and Hawley, J.F.: 1991,Astrophys. J. 376, 214.Google Scholar
  2. Boris, J.P. and Book, D.L.: 1976,J. Comp. Phys. 20, 397.Google Scholar
  3. Fleck, R.C.: 1989,Astron. J. 97, 783.Google Scholar
  4. Fujimoto, M. and Terasawa, T.: 1994,J. Geophys. Res. 99, 8601.Google Scholar
  5. Hawley, J.F. and Balbus, S.A.: 1991,Astrophys. J. 376, 223.Google Scholar
  6. Karpen, J.T., Dahlburg, R.B. and Davilla, J.: 1994,Astrophys. J. 421, 372.Google Scholar
  7. La Belle-Hamer, A.L., Fu, Z.F. and Lee, L.C.: 1988,Geophys. Res. Lett. 15, 152.Google Scholar
  8. Liu, Z.X. and Hu, Y.D.: 1988,Geophys. Res. Lett. 15, 752.Google Scholar
  9. Lysak, R.L.: 1995,XXI IUGG General Assembly, GAA61E-8.Google Scholar
  10. Miura, A.: 1982,Phys. Rev. Lett. 49, 779.Google Scholar
  11. Miura, A.: 1984,J. Geophys. Res. 89, 801.Google Scholar
  12. Miura, A.: 1987,J. Geophys. Res. 92, 3195.Google Scholar
  13. Miura, A.: 1990,Geophys. Res. Lett. 17, 749.Google Scholar
  14. Miura, A.: 1992,J. Geophys. Res. 97, 10655.Google Scholar
  15. Pu, Z.Y., Yei, M. and Liu, Z.X.: 1990a,J. Geophys. Res. 95, 10559.Google Scholar
  16. Pu, Z.Y., Hou, P.T. and Liu, Z.X.: 1990b,J. Geophys. Res. 95, 18861.Google Scholar
  17. Russell, C.T. and Elphic, R. C.: 1979,Geophys. Res. Lett.,6, 33.Google Scholar
  18. Sato, T., Hayashi, T., Walker, R.J. and Ashour-Abdalla, M.: 1983,Geophys. Res. Lett. 10, 221.Google Scholar
  19. Sen, A.K.: 1964,Phys. Fluids 7, 1293.Google Scholar
  20. Seon, J.H., Frank, L.A., Gosling, J.T., Lazarus, A.J., Lepping, R.P., and Russell, C.T.: 1995,J. Geophys. Res., in press.Google Scholar
  21. Thomas, V.A. and Winske, D.: 1993,J. Geophys. Res.,98, 11425.Google Scholar
  22. Zalesak, S.T.: 1976,J. Comp. Phys. 31, 335.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • J. C. Yong
    • 1
  • S. H. Oh
    • 1
  • K. Min
    • 1
  1. 1.Korea Advanced Institute of Science and TechnologyTaejonKorea

Personalised recommendations