Astrophysics and Space Science

, Volume 242, Issue 1–2, pp 165–207 | Cite as

Magnetic reconnection in plasmas

  • Dieter Biskamp


A review of the present status of the theory of magnetic reconnection is given. In strongly collisional plasmas reconnection proceeds via resistive current sheets, i.e. quasi-stationary macroscopic Sweet-Parker sheets at intermediate values of the magnetic Reynolds numberR m , or mirco-current sheets in MHD turbulence, which develops at highR m . In hot, dilute plasmas the reconnection dynamics is dominated by nondissipative effects, mainly the Hall term and electron inertia. Reconnection rates are found to depend only on the ion mass, being independent of the electron inertia and the residual dissipation coefficients. Small-scale whistler turbulence is readily excited giving rise to an anomalous electron viscosity. Hence reconnection may be much more rapid than predicted by conventional resistive theory.

Key words

Magnetic Fields Reconnection MHD Turbulence Cosmic Plasmas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amo, H., T. Sato, and A. Kageyama, 1994, Intermittent energy bursts and recurrent topological change of a twisted magnetic flux tube, National Institute for Fusion Science, Res. Report NIFS-309, Nagoya, JapanGoogle Scholar
  2. Braginskii, S. I., 1965, Transport processes in a plasma, Reviews of Plasma Physics, ed. M. A. Leontovich (Consultants Bureau, New York), Vol. 1, 205–311Google Scholar
  3. Birn, J., and E. W. Hones, Jr., 1981, Three-dimensional computer modeling of dynamic reconnection in the geomagnetic tail, J. Geophys. Res.86, 6802–6808Google Scholar
  4. Biskamp, D., 1986, Magnetic reconnection via current sheets, Phys. Fluids29, 1520–1531Google Scholar
  5. Biskamp, D., 1991, Algebraic nonlinear growth of the resistive kink instability, Phys. FluidsB3, 3353–3356Google Scholar
  6. Biskamp, D., 1993, Nonlinear Magnetohydrodynamics (Cambridge University Press, Cambridge)Google Scholar
  7. Biskamp, D., and U. Bremer, 1993, Dynamics and statistics of inverse cascade processes in 2D magnetohydrodynamic turbulence, Phys. Rev. Lett.72, 3819–3822Google Scholar
  8. Biskamp, D., and K. Schindler, 1971, Instability of two-dimensional collisionless plasmas with neutral points, Plasma Phys.13, 1013–1026Google Scholar
  9. Biskamp, D., and H. Welter, 1980, Coalescence of magnetic islands, Phys. Rev. Lett.44, 1069–1072Google Scholar
  10. Biskamp, D., and H. Welter, 1989a, Dynamics of decaying two-dimensional magnetohydrodynamic turbulence, Phys. Fluids B1, 1964–1979Google Scholar
  11. Biskamp, D., and H. Welter, 1989b, Magnetic arcade evolution and instability, Solar Phys.120, 49–77Google Scholar
  12. Biskamp, D., and H. Welter, 1990, Magnetic field amplification and saturation in two-dimensional magnetohydrodynamic turbulence, Phys. FluidsB 2, 1781–1793Google Scholar
  13. Biskamp, D., E. Schwarz, and J. F. Drake, 1995, Ion-controlled collisionless magnetic reconnection, submitted to Phys. Rev. Lett.Google Scholar
  14. Bulanov, S. V., J. Sakai, and S. I. Syrovatskii, 1979, Tearing mode instability in approximately steady MHD configurations, Sov. J. Plasma Phys.5, 157–163Google Scholar
  15. Burlage, L. F., and J. M. Turner, 1976, Microscale Alfvén waves in the solar wind at 1 AU, J. Geophys. Res.81, 73–77Google Scholar
  16. Cowley, S. W. H., 1975, Magnetic field line reconnection in a highly-conducting incompressible fluid: properties of the diffusion region, J. Plasma Phys.14, 475–490Google Scholar
  17. Dobrowolny, M., A. Mangeney, and P. Veltri, 1980, Fully developed anisotropic hydromagnetic turbulence in interplanetary space, Phys. Rev. Lett.45, 144–147Google Scholar
  18. Drake, J. F., R. G. Kleva, and M. E. Mandt, 1994, Structure of thin current layers: Implications for magnetic reconnection, Phys. Rev. Lett.73, 1251–1254Google Scholar
  19. Elsässer, W. M., 1950, The hydromagnetic equations, Phys. Rev.79, 183Google Scholar
  20. Fadeev, V. M., I. F. Kvartskhava, and N. N. Komarov, 1965, Self-focusing of local plasma currents, Nucl. Fusion5, 202–209Google Scholar
  21. Furth, H. P., J. Killeen, and M. N. Rosenbluth, 1963, Finite resistivity instabilities of a sheet pinch, Phys. Fluids6, 459–484Google Scholar
  22. Grappin, R., A. Pouquet, and J. Léorat, 1983, Dependence of MHD turbulence spectra on the velocity-magnetic field correlation, Astron. Astrophys.126, 51–58Google Scholar
  23. Hautz, R., and M. Scholer, 1987, Numerical simulations on the structure of plasmoids in the deep tail, Geophys. Res. Lett.14, 969–972Google Scholar
  24. Iroshnikov, P. S., 1964, Turbulence of a conducting fluid in a strong magnetic field, Sov. Astron.7, 566–571Google Scholar
  25. Kageyama, A., K. Watanabe, and T. Sato, 1990, Global simulation of the magnetosphere with a long tail: The formation and ejection of plasmoids, National Institute of Fusion Studies, Res. Report NIFS-49, Nagoya, JapanGoogle Scholar
  26. Kingsep, A. S., K. V. Chukbar, and V. V. Yan'kov, 1990, Electron magnetohydrodynamics, Reviews of Plasma Physics, ed. B. B. Kadomtsev (Consultants Bureau, New York), Vol.16, 243–288Google Scholar
  27. Kraichnan, R. H., 1965, Inertial range spectrum in hydromagnetic turbulence, Phys. Fluids8, 1385–1387Google Scholar
  28. Matthaeus, W. H., M. L. Goldstein, and C. Smith, 1982, Evaluation of magnetic helicity in homogeneous turbulence, Phys. Rev. Lett.48, 1256–1259Google Scholar
  29. Matthaeus, W. H., and D. Montgomery, 1980, Selective decay hypothesis at high mechanical and magnetic Reynolds numbers. Ann. NY Acad. Sci.357, 203Google Scholar
  30. Matthaeus, W. H., and D. Montgomery, 1984, Dynamic alignment and selective decay in MHD, in: Statistical Physics and Chaos in Fusion Plasmas, eds. W. Horton and L. Reichl (Wiley, New York), pp. 285–291Google Scholar
  31. Meneguzzi, M., U. Frisch, and A. Pouquet, 1981, Helical and nonhelical turbulent dynamos, Phys. Rev. Lett.47, 1060–1064Google Scholar
  32. Mikic, Z., D. C. Barnes, and D. D. Schnack, 1988, Dynamical evolution of a solar coronal magnetic arcade, Astrophys. J.328, 830–847Google Scholar
  33. Mikhailovskii, A. B., 1974, Theory of Plasma Instabilities (Consultants Bureau, New York), Vol. 2, p. 63Google Scholar
  34. Nordlund, A. A. Brandenburg, R. L. Jennings, M. Rieutord, J. Ruokolainen, R. F. Stein, and I. Tuominen, 1992, Dynamo action in stratified convection with overshoot, Astrophys. J.392, 647–652Google Scholar
  35. Otto, A., K. Schindler, and J. Birn, 1990, Quantitative study of the nonlinear formation and acceleration of plasmoids in the earth's magnetotail, J. Geophys. Res.95, 15023–15037Google Scholar
  36. Parker, E. N., 1963, The solar flare phenomenon and the theory of reconnection and annihilation of magnetic fields, Astrophys. J. Suppl. Ser.8, 177–211Google Scholar
  37. Petschek, H. E., 1964, Magnetic field annihilation, AAS/NASA Symp. on the Physics of Solar Flares, ed. W. N. Hess (NASA, Washington, DC) pp. 425–437Google Scholar
  38. Politano, H., A. Pouquet, and P. L. Sulem, 1995, Current and vorticity dynamics in three-dimensional MHD turbulence, Phys. Plasmas2, 2931–2939Google Scholar
  39. Pouquet, A., U. Frisch, and J. Léorat, 1976, Strong MHD helical turbulence and the nonlinear dynamo effect, J. Fluid Mech.77, 321–354Google Scholar
  40. Pritchett, P. L., and C. C. Wu, 1979, Coalescence of magnetic islands, Phys. Fluids22, 2140–2146Google Scholar
  41. Rutherford, P. H., 1973, Nonlinear growth of the tearing mode, Phys. Fluids16, 1903–1908Google Scholar
  42. Sato, T., and T. Hayashi, 1979, Externally driven magnetic reconnection and a powerful magnetic energy converter, Phys. Fluids22, 1189–1202Google Scholar
  43. Steenbeck, M., F. Krause, and K. H. Rädler, 1966, Berechnung der mittleren Lorentz-Feldstärke (v×B) für ein elektrisch leitendes Medium in turbulenter, durch Coriolis Kräfte beeinflusster Bewegung. Z. Naturforsch.21a, 369–376Google Scholar
  44. Sweet, P. A., 1958, The production of high energy particles in solar flares, Nuovo Cimento Suppl.8 Ser. X, 188–196Google Scholar
  45. Syrovatskii, S. I., 1971, Formation of current sheets in a plasma with a frozen-in strong magnetic field, Sov. Phys.-JETP33, 933–940Google Scholar
  46. Syrovatskii, S. I., 1981, Pinch sheets and reconnection in astrophysics, Annu. Rev. Astron. Astrophys.19, 163–229Google Scholar
  47. Taylor, J. B., 1986, Relaxation and magnetic reconnection in plasmas, Rev. Mod. Phys.53, 741–763Google Scholar
  48. Waelbroeck, F. L., 1989, Current sheets and nonlinear growth of them=1 kink-tearing mode, Phys. FluidsB 1, 2372–2380Google Scholar
  49. Woltjer, L., 1958, A theorem of force-free magnetic fields, Proc. Natl. Acad. Sci. (Washington)44, 489–492Google Scholar
  50. Yanase, S., J. Mizushima, and S. Kida, 1991, Coherent structures in MHD turbulence and turbulent dynamo, in Turbulence and Coherent Structures, ed. O. Métais and M. Lesieur (Kluiver, Dordrecht), pp. 569–583Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Dieter Biskamp
    • 1
  1. 1.Max-Planck-Institut für PlasmaphysikGarchingGermany

Personalised recommendations