Skip to main content
Log in

Magnetic reconnection in plasmas

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

A review of the present status of the theory of magnetic reconnection is given. In strongly collisional plasmas reconnection proceeds via resistive current sheets, i.e. quasi-stationary macroscopic Sweet-Parker sheets at intermediate values of the magnetic Reynolds numberR m , or mirco-current sheets in MHD turbulence, which develops at highR m . In hot, dilute plasmas the reconnection dynamics is dominated by nondissipative effects, mainly the Hall term and electron inertia. Reconnection rates are found to depend only on the ion mass, being independent of the electron inertia and the residual dissipation coefficients. Small-scale whistler turbulence is readily excited giving rise to an anomalous electron viscosity. Hence reconnection may be much more rapid than predicted by conventional resistive theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amo, H., T. Sato, and A. Kageyama, 1994, Intermittent energy bursts and recurrent topological change of a twisted magnetic flux tube, National Institute for Fusion Science, Res. Report NIFS-309, Nagoya, Japan

    Google Scholar 

  • Braginskii, S. I., 1965, Transport processes in a plasma, Reviews of Plasma Physics, ed. M. A. Leontovich (Consultants Bureau, New York), Vol. 1, 205–311

    Google Scholar 

  • Birn, J., and E. W. Hones, Jr., 1981, Three-dimensional computer modeling of dynamic reconnection in the geomagnetic tail, J. Geophys. Res.86, 6802–6808

    Google Scholar 

  • Biskamp, D., 1986, Magnetic reconnection via current sheets, Phys. Fluids29, 1520–1531

    Google Scholar 

  • Biskamp, D., 1991, Algebraic nonlinear growth of the resistive kink instability, Phys. FluidsB3, 3353–3356

    Google Scholar 

  • Biskamp, D., 1993, Nonlinear Magnetohydrodynamics (Cambridge University Press, Cambridge)

    Google Scholar 

  • Biskamp, D., and U. Bremer, 1993, Dynamics and statistics of inverse cascade processes in 2D magnetohydrodynamic turbulence, Phys. Rev. Lett.72, 3819–3822

    Google Scholar 

  • Biskamp, D., and K. Schindler, 1971, Instability of two-dimensional collisionless plasmas with neutral points, Plasma Phys.13, 1013–1026

    Google Scholar 

  • Biskamp, D., and H. Welter, 1980, Coalescence of magnetic islands, Phys. Rev. Lett.44, 1069–1072

    Google Scholar 

  • Biskamp, D., and H. Welter, 1989a, Dynamics of decaying two-dimensional magnetohydrodynamic turbulence, Phys. Fluids B1, 1964–1979

    Google Scholar 

  • Biskamp, D., and H. Welter, 1989b, Magnetic arcade evolution and instability, Solar Phys.120, 49–77

    Google Scholar 

  • Biskamp, D., and H. Welter, 1990, Magnetic field amplification and saturation in two-dimensional magnetohydrodynamic turbulence, Phys. FluidsB 2, 1781–1793

    Google Scholar 

  • Biskamp, D., E. Schwarz, and J. F. Drake, 1995, Ion-controlled collisionless magnetic reconnection, submitted to Phys. Rev. Lett.

  • Bulanov, S. V., J. Sakai, and S. I. Syrovatskii, 1979, Tearing mode instability in approximately steady MHD configurations, Sov. J. Plasma Phys.5, 157–163

    Google Scholar 

  • Burlage, L. F., and J. M. Turner, 1976, Microscale Alfvén waves in the solar wind at 1 AU, J. Geophys. Res.81, 73–77

    Google Scholar 

  • Cowley, S. W. H., 1975, Magnetic field line reconnection in a highly-conducting incompressible fluid: properties of the diffusion region, J. Plasma Phys.14, 475–490

    Google Scholar 

  • Dobrowolny, M., A. Mangeney, and P. Veltri, 1980, Fully developed anisotropic hydromagnetic turbulence in interplanetary space, Phys. Rev. Lett.45, 144–147

    Google Scholar 

  • Drake, J. F., R. G. Kleva, and M. E. Mandt, 1994, Structure of thin current layers: Implications for magnetic reconnection, Phys. Rev. Lett.73, 1251–1254

    Google Scholar 

  • Elsässer, W. M., 1950, The hydromagnetic equations, Phys. Rev.79, 183

    Google Scholar 

  • Fadeev, V. M., I. F. Kvartskhava, and N. N. Komarov, 1965, Self-focusing of local plasma currents, Nucl. Fusion5, 202–209

    Google Scholar 

  • Furth, H. P., J. Killeen, and M. N. Rosenbluth, 1963, Finite resistivity instabilities of a sheet pinch, Phys. Fluids6, 459–484

    Google Scholar 

  • Grappin, R., A. Pouquet, and J. Léorat, 1983, Dependence of MHD turbulence spectra on the velocity-magnetic field correlation, Astron. Astrophys.126, 51–58

    Google Scholar 

  • Hautz, R., and M. Scholer, 1987, Numerical simulations on the structure of plasmoids in the deep tail, Geophys. Res. Lett.14, 969–972

    Google Scholar 

  • Iroshnikov, P. S., 1964, Turbulence of a conducting fluid in a strong magnetic field, Sov. Astron.7, 566–571

    Google Scholar 

  • Kageyama, A., K. Watanabe, and T. Sato, 1990, Global simulation of the magnetosphere with a long tail: The formation and ejection of plasmoids, National Institute of Fusion Studies, Res. Report NIFS-49, Nagoya, Japan

    Google Scholar 

  • Kingsep, A. S., K. V. Chukbar, and V. V. Yan'kov, 1990, Electron magnetohydrodynamics, Reviews of Plasma Physics, ed. B. B. Kadomtsev (Consultants Bureau, New York), Vol.16, 243–288

    Google Scholar 

  • Kraichnan, R. H., 1965, Inertial range spectrum in hydromagnetic turbulence, Phys. Fluids8, 1385–1387

    Google Scholar 

  • Matthaeus, W. H., M. L. Goldstein, and C. Smith, 1982, Evaluation of magnetic helicity in homogeneous turbulence, Phys. Rev. Lett.48, 1256–1259

    Google Scholar 

  • Matthaeus, W. H., and D. Montgomery, 1980, Selective decay hypothesis at high mechanical and magnetic Reynolds numbers. Ann. NY Acad. Sci.357, 203

    Google Scholar 

  • Matthaeus, W. H., and D. Montgomery, 1984, Dynamic alignment and selective decay in MHD, in: Statistical Physics and Chaos in Fusion Plasmas, eds. W. Horton and L. Reichl (Wiley, New York), pp. 285–291

    Google Scholar 

  • Meneguzzi, M., U. Frisch, and A. Pouquet, 1981, Helical and nonhelical turbulent dynamos, Phys. Rev. Lett.47, 1060–1064

    Google Scholar 

  • Mikic, Z., D. C. Barnes, and D. D. Schnack, 1988, Dynamical evolution of a solar coronal magnetic arcade, Astrophys. J.328, 830–847

    Google Scholar 

  • Mikhailovskii, A. B., 1974, Theory of Plasma Instabilities (Consultants Bureau, New York), Vol. 2, p. 63

    Google Scholar 

  • Nordlund, A. A. Brandenburg, R. L. Jennings, M. Rieutord, J. Ruokolainen, R. F. Stein, and I. Tuominen, 1992, Dynamo action in stratified convection with overshoot, Astrophys. J.392, 647–652

    Google Scholar 

  • Otto, A., K. Schindler, and J. Birn, 1990, Quantitative study of the nonlinear formation and acceleration of plasmoids in the earth's magnetotail, J. Geophys. Res.95, 15023–15037

    Google Scholar 

  • Parker, E. N., 1963, The solar flare phenomenon and the theory of reconnection and annihilation of magnetic fields, Astrophys. J. Suppl. Ser.8, 177–211

    Google Scholar 

  • Petschek, H. E., 1964, Magnetic field annihilation, AAS/NASA Symp. on the Physics of Solar Flares, ed. W. N. Hess (NASA, Washington, DC) pp. 425–437

    Google Scholar 

  • Politano, H., A. Pouquet, and P. L. Sulem, 1995, Current and vorticity dynamics in three-dimensional MHD turbulence, Phys. Plasmas2, 2931–2939

    Google Scholar 

  • Pouquet, A., U. Frisch, and J. Léorat, 1976, Strong MHD helical turbulence and the nonlinear dynamo effect, J. Fluid Mech.77, 321–354

    Google Scholar 

  • Pritchett, P. L., and C. C. Wu, 1979, Coalescence of magnetic islands, Phys. Fluids22, 2140–2146

    Google Scholar 

  • Rutherford, P. H., 1973, Nonlinear growth of the tearing mode, Phys. Fluids16, 1903–1908

    Google Scholar 

  • Sato, T., and T. Hayashi, 1979, Externally driven magnetic reconnection and a powerful magnetic energy converter, Phys. Fluids22, 1189–1202

    Google Scholar 

  • Steenbeck, M., F. Krause, and K. H. Rädler, 1966, Berechnung der mittleren Lorentz-Feldstärke (v×B) für ein elektrisch leitendes Medium in turbulenter, durch Coriolis Kräfte beeinflusster Bewegung. Z. Naturforsch.21a, 369–376

    Google Scholar 

  • Sweet, P. A., 1958, The production of high energy particles in solar flares, Nuovo Cimento Suppl.8 Ser. X, 188–196

    Google Scholar 

  • Syrovatskii, S. I., 1971, Formation of current sheets in a plasma with a frozen-in strong magnetic field, Sov. Phys.-JETP33, 933–940

    Google Scholar 

  • Syrovatskii, S. I., 1981, Pinch sheets and reconnection in astrophysics, Annu. Rev. Astron. Astrophys.19, 163–229

    Google Scholar 

  • Taylor, J. B., 1986, Relaxation and magnetic reconnection in plasmas, Rev. Mod. Phys.53, 741–763

    Google Scholar 

  • Waelbroeck, F. L., 1989, Current sheets and nonlinear growth of them=1 kink-tearing mode, Phys. FluidsB 1, 2372–2380

    Google Scholar 

  • Woltjer, L., 1958, A theorem of force-free magnetic fields, Proc. Natl. Acad. Sci. (Washington)44, 489–492

    Google Scholar 

  • Yanase, S., J. Mizushima, and S. Kida, 1991, Coherent structures in MHD turbulence and turbulent dynamo, in Turbulence and Coherent Structures, ed. O. Métais and M. Lesieur (Kluiver, Dordrecht), pp. 569–583

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biskamp, D. Magnetic reconnection in plasmas. Astrophys Space Sci 242, 165–207 (1996). https://doi.org/10.1007/BF00645113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645113

Key words

Navigation