Skip to main content
Log in

List of papers from other journals

  • Published:
Solar Physics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Active Regions

  • J. L. R. Saba and K. T. Strong: ‘Coronal Dynamics of a Quiescent Active Region’,Astrophys. J. 375 (1991) 789.

    Google Scholar 

  • H. Wang, F. Tang, H. Zirin, and Ai Guoxiang: ‘Motions, Fields, and Flares in the 1989 March Active Region’,Astrophys. J. 380 (1991) 282.

    Google Scholar 

  • S. F. Brown: ‘Loop Ensemble Models of Solar Active Regions’,Astron. Astrophys. 249 (1991) 243.

    Google Scholar 

  • C. E. Alissandrakis, M. R. Kundu, and K. R. Shevgaonkar: ‘VLA Observations of Solar Active Regions at 6 and 20 cm’,Astron. Astrophys. 251 (1991) 276.

    Google Scholar 

  • E. N. Parker: ‘Intrinsic Magnetic Discontinuities and Solar X-Ray Emission’,Geophys. Res. Letters 17 (1991) 2055.

    Google Scholar 

Convection and Granulation

  • G. W. Simon, A. M. Title, and N. O. Weiss: ‘Modeling Mesogranules and Exploders on the Solar Surface’,Astrophys. J. 375 (1991) 775.

    Google Scholar 

  • H. Hanami and T. Tajima: ‘Numerical Study of Compressible Solar Magnetoconvection with an Open Transitional Boundary’,Astrophys. J. 377 (1991) 694.

    Google Scholar 

  • J. Christensen-Dalsgaard, D. O. Gough, and M. J. Thompson: ‘The Depth of the Solar Convection Zone’,Astrophys. J. 378 (1991) 413.

    Google Scholar 

  • C. U. Keller and S. Koutchmy: ‘Multicolor Continuum Analysis of the Solar Granulation in Quiet and Active Regions’,Astrophys. J. 379 (1991) 751.

    Google Scholar 

  • E. N. Parker: ‘Dynamical Buoyancy of Hydrodynamic Eddies’,Astrophys. J. 380 (1991) 251.

    Google Scholar 

  • M. Hossain and D. J. Mullan: ‘Three-Dimensional Compressible Hydrodynamic Convection in the Sun and Stars’,Astrophys. J. 380 (1991) 631.

    Google Scholar 

  • C. A. Lindsey and J. T. Jefferies: ‘The Solar Chromospheric Supergranular Network in 850 Micron Radiation’,Astrophys. J. 383 (1991) 443.

    Google Scholar 

  • P. A. Fox, M. L. Theobald, and S. Sofia: ‘Compressible Magnetic Convection: Formulation and Two-Dimensional Models’,Astrophys. J. 383 (1991) 860.

    Google Scholar 

  • A. Hanslmeier, W. Mattig, and A. Nesis: ‘Granular and Intergranular Line Profiles in Solar Active and Quiet Regions’,Astron. Astrophys. 248 (1991) 232.

    Google Scholar 

  • T. Roudier, P. Mein, R. Muller, J. Vigneau, J. M. Malherbe, C. Coutard, and R. Hellier: ‘Dynamics of the Solar Granulation. I. Processing of MSDP Spectra’,Astron. Astrophys. 248 (1991) 237.

    Google Scholar 

  • T. Roudier, P. Mein, R. Muller, J. Vigneau, J. M. Malherbe, C. Coutard, and R. Hellier: ‘Dynamics of the Solar Granulation. II. Statistical Analysis Power Spectra, Coherence, Phase’,Astron. Astrophys. 248 (1991) 245.

    Google Scholar 

  • A. Hanslmeier, A. Nesis, and W. Mattig: ‘The Variation of the Solar Granulation Structure in Active and Non-Active Regions’,Astron. Astrophys. 251 (1991) 307.

    Google Scholar 

  • A. Hanslmeier, W. Mattig, and A. Nesis: ‘Selected Examples of Bisector and Line Parameter Variation over a Granular-Intergranular Region’,Astron. Astrophys. 251 (1991) 669.

    Google Scholar 

  • R. Komm, W. Mattig, and A. Nesis: ‘The Height Dependence of Velocity-Intensity Fluctuations and Several Non-Dimensional Parameters in the Solar Photosphere’,Astron. Astrophys. 252 (1991) 812.

    Google Scholar 

  • R. Komm, W. Mattig, and A. Nesis: ‘The Decay of Granular Motions and the Generation of Gravity Waves in the Solar Photosphere’,Astron. Astrophys. 252 (1991) 827.

    Google Scholar 

  • G. W. Simon and N. O. Weiss: ‘Convective Structures in the Sun’,Monthly Notices Roy. Astron. Soc. 252 (1991) 1P.

    Google Scholar 

Corona

  • D. B. Melrose: ‘Neutralized and Unneutralized Current Patterns in the Solar Corona’,Astrophys. J. 381 (1991) 306.

    Google Scholar 

  • J. T. Karpen, S. K. Antiochos, and C. R. DeVore: ‘Coronal Current-Sheet Formation: the Effect of Asymmetric and Symmetric Shears’,Astrophys. J. 382 (1991) 327.

    Google Scholar 

  • S. R. Habbal and E. Grace: ‘The Connection between Coronal Bright Points and the Variability of the Quiet-Sun Extreme-Ultraviolet Emission’,Astrophys. J. 382 (1991) 667.

    Google Scholar 

  • R. S. Steinolfson: ‘Coronal Evolution Due to Shear Motion’,Astrophys. J. 382 (1991) 677.

    Google Scholar 

  • D. Rabin: ‘Energy Balance in Coronal Funnels’,Astrophys. J. 383 (1991) 407.

    Google Scholar 

  • R. B. Dahlburg, S. K. Antiochos, and T. A. Zang: ‘Dynamics of Solar Coronal Magnetic Fields’,Astrophys. J. 383 (1991) 420.

    Google Scholar 

  • T. P. Krisher, J. D. Anderson, D. D. Morabito, S. W. Asmar, S. E. Borutzki, M. L. Delitsky, A. C. Densmore, P. M. Eshe, G. D. Lewis, M. J. Maurer, D. C. Roth, Y. H. Son, T. R. Spilker, D. N. Sweetnam, A. H. Taylor, G. L. Tyler, D. L. Gresh, and P. A. Rosen: ‘Radio Range Measurements of Coronal Electron Densities at 13 and 3.6 Centimeter Wavelengths during the 1988 Solar Conjunction of Voyager 2’,Astrophys. J. 375 (1991) L57.

    Google Scholar 

  • S. Chandra: ‘Two-Dimensional Steady-State Pressure Structure in a Coronal Loop’,Bull. Astron. Soc. India 19 (1991) 81.

    Google Scholar 

  • K. P. Raju, J. N. Desai, T. Chandrasekhar, and N. M. Ashok: ‘Kinematics of Discrete Components in Solar Coronal Plasma in Relation to Coronal Magnetic Fields’,Bull. Astron. Soc. India 19 (1991) 82.

    Google Scholar 

  • Wang Shui, S. T. Wu, and A. H. Wang: ‘Two-Dimensional MHD Equilibria in the Solar Corona’,Chin. Astron. Astrophys. 15 (1991) 470.

    Google Scholar 

  • F. Bagenal and S. Gibson: ‘Modeling the Large-Scale Structure of the Solar Corona’,J. Geophys. Res. 96 (1991) 17663.

    Google Scholar 

  • S. L. Moses, P. V. Coroniti, E. W. Greenstadt, and B. T. Tsurutani: ‘Possible Wave Amplitudes in Shocks in the Solar Corona: Predictions for Solar Probe’,J. Geophys. Res. 96 (1991) 21397.

    Google Scholar 

  • J. A. Linker, G. van Hoven, and D. D. Schnack: ‘A Three-Dimensional Simulation of a Coronal Streamer’,Geophys. Res.-Letters 17 (1991) 2281.

    Google Scholar 

  • D. J. McComas, J. L. Phillips, A. J. Hundhausen, and J. T. Burkepile: ‘Observations of Disconnection of Open Coronal Magnetic Structures’,Geophys. Res.-Letters 18 (1991) 73.

    Google Scholar 

Coronal Holes

  • E. N. Parker: ‘Heating Solar Coronal Holes’,Astrophys. J. 372 (1991) 719.

    Google Scholar 

  • R. L. Moore, Z. E. Musielak, S. T. Suess, and C. H. An: ‘Alfv00E9;n Wave Trapping, Network Microflaring, and Heating in Solar Coronal Holes’,Astrophys. J. 378 (1991) 347.

    Google Scholar 

Coronal Mass Ejections

  • T. G. Forbes and P. A. Isenberg: ‘A Catastrophe Mechanism for Coronal Mass Ejections’,Astrophys. J. 373 (1991) 294.

    Google Scholar 

  • R. F. Willson, J. T. Schmelz, R. D. Gonzales, K. R. Lang, and K. L. Smith: ‘Multi-Wave Band SMM-VLA Observations of an M2 Flare an Associated Coronal Mass Ejection’,Astrophys. J. 378 (1991) 360.

    Google Scholar 

  • S. Kahler: ‘Coronal Mass Ejections and Stramers Associated with the New Cycle Active Regions at Solar Minimum’,Astrophys. J. 378 (1991) 398.

    Google Scholar 

  • E. W. Cliver, H. V. Cane, D. J. Forrest, M. J. Koomen, R. A. Howard, and C. S. Wright: ‘Solar Gamma-Ray-Line Flares, Type II Radio Bursts, and Coronal Mass Ejections’,Astrophys. J. 379 (1991) 741.

    Google Scholar 

  • Hu Youqiu and Zhang Huinan: ‘Solar Atmospheric Responses to Magnetic Flux Eruptions. I. A Mechanism for Coronal Mass Ejections’,Chin. Astron. Astrophys. 15 (1991) 284.

    Google Scholar 

  • Hu Youqiu and Zhang Huinan: ‘Solar Atmospheric Responses to Magnetic Flux Eruptions. II. Slow Shocks near the Sun’,Chin. Astron. Astrophys. 15 (1991) 292.

    Google Scholar 

Flare Occurrence

  • E. T. Lu and R. J. Hamilton: ‘Avalanches and the Distribution of Solar Flares’,Astrophys. J. 380 (1991) L89.

    Google Scholar 

  • V. K. Verma, G. C. Joshi, W. Uddin, and D. C. Paliwal: ‘Search for a 152–158 Days Periodicity in the Occurrence Rate of Solar Flares Inferred from Spectral Data of Radio Bursts’,Astron. Astrophys. Suppl. Ser. 90 (1991) 83.

    Google Scholar 

  • A. Antalová and B. Viktorínová: ‘LDE Flares in the 20the Solar Cycle. I. Comparison of the Time Behaviour of H-Alpha Grouped and LDE Flares’,Bull. Astron. Inst. Czech. 42 (1991) 133.

    Google Scholar 

  • A. Antalová and B. Viktorínová: ‘LDE Flares in the 21st Solar Cycle (1976–1986). I. Comparison of the Time Occurrence of H-Alpha and LDE Flares’,Bull. Astron. Inst. Czech. 42 (1991) 144.

    Google Scholar 

Flares

  • K. G. Gayley and R. C. Canfield: ‘Inferring Chromospheric Flare Heating from Hydrogen-Line Wings’,Astrophys. J. 380 (1991) 660.

    Google Scholar 

  • A. C. Sterling, J. T. Mariska, K. Shibata, and Y. Suematsu: ‘Numerical Simulations of Microflare Evolution in the Solar Transition Region and Corona’,Astrophys. J. 381 (1991) 313.

    Google Scholar 

  • K. Aglietta, G. Badino, G. Bologna, C. Castagnoli, A. Castellina, V. L. Dadykin, W. Fulgione, P. Galeotti, F. F. Kalchukov, I. V. Korolkova, P. V. Kortchaguin, V. A. Kudryavtsev, A. S. Malguin, L. Periale, V. G. Ryassny, O. G. Ryazhskaya, O. Saavedra, G. Trinchero, S. Vernetto, V. F. Yakushev, and G. T. Zatsepin: ‘Large Solar Flares: Analysis of the Events Recorded by the Mont Blanc Neutrino Detector’,Astrophys. J. 382 (1991) 344.

    Google Scholar 

  • C. H. Mandrini, P. Démoulin, J. C. Hénoux, and M. E. Machado: ‘Evidence for the Interaction of Large-Scale Magnetic Structures in Solar Flares’,Astron. Astrophys. 250 (1991) 541.

    Google Scholar 

Flare Stars

  • S. L. Hawley and B. R. Pettersen: ‘The Great Flare of 1985 April 12 on AD Leonis’,Astrophys. J. 378 (1991) 725.

    Google Scholar 

  • F. M. Mahmoud: ‘A Short Period Trial Defection of the Flare Star AD Leo’,Astrophys. Space Sci. 186 (1991) 109.

    Google Scholar 

  • F. M. Mahmoud: ‘Photoelectric Observations of the Flare Star BD+55° 1823’,Astrophys. Space Sci. 186 (1991) 113.

    Google Scholar 

Magnetic Field

  • H. B. Snodgrass: ‘A Torsional Oscillation in the Rotation of the Solar Magnetic Field’,Astrophys. J. 383 (1991) L85.

    Google Scholar 

  • U. Grossmann-Doerth, M. Schüssler, and S. K. Solanki: ‘The Effect of Non-Linear Oscillations in Magnetic Flux Tubes on Stokes V Asymmetry’,Astron. Astrophys. 249 (1991) 239.

    Google Scholar 

  • C. E. Alissandrakis, H. C. Dara, and S. Koutchmy: ‘Study of Small Scale Magnetic Flux and the Corresponding Velocity Pattern’,Astron. Astrophys. 249 (1991) 533.

    Google Scholar 

  • M. A. Berger: ‘Generation of Coronal Magnetic Fields by Random Surface Motions. I. Mean Square Twist and Current Density’,Astron. Astrophys. 252 (1991) 369.

    Google Scholar 

  • B. P. Filippov: ‘Magnetic Field Structure of Active Regions. The Homogeneous Inverse Problem’,Astron. Zh. 68 (1991) 1299 (Soviet Astron.-A.J. 35 (1991) 652).

    Google Scholar 

Magnetohydrodynamics

  • J. H. Thomas and B. Montesinos: ‘Siphon Flows in Isolated Magnetic Flux Tubes. IV. Critical Flows with Standing Tube Shocks’,Astrophys. J. 375 (1991) 404.

    Google Scholar 

  • J. J. Aly: ‘How Much Energy Can be Stored in a Three-Dimensional Force-Free Magnetic Field?’,Astrophys. J. 375 (1991) L61.

    Google Scholar 

  • P. A. Sturrock: ‘Maximum Energy of Semi-Infinite Magnetic Field Configurations’,Astrophys. J. 380 (1991) 655.

    Google Scholar 

  • B. C. Low: ‘On the Spontaneous Formation of Electric Current Sheets above a Flexible Solar Photosphere’,Astrophys. J. 381 (1991) 295.

    Google Scholar 

  • D. Degenhardt: ‘Stationary Siphon Flows in Thin Magnetic Flux Tubes. II. Radiative Heat Exchange with the Surroundings’,Astron. Astrophys. 248 (1991) 637.

    Google Scholar 

  • V. M. Bardakov: ‘Diffusion Current Sheets with Large Transverse Magnetic Field Component on the Sun’,Pisma Astron. Zh. 17 (1991) 841 (Soviet Astron.-Letters 17 (1991) 356).

    Google Scholar 

Oscillations

  • D. B. Guenther: ‘Thep-Mode Oscillation Spectra of an Evolving 1M⊙ Sun-like Star’,Astrophys. J. 375 (1991) 352.

    Google Scholar 

  • P. Kumar and E. Lu: ‘The Location of the Source of High-Frequency Solar Acoustic Oscillations’,Astrophys. J. 375 (1991) L35.

    Google Scholar 

  • W. A. Dziembowski and P. R. Goode: ‘Seismology for the Fine Structure in the Sun's Oscillations Varying with Its Activity Cycle’,Astrophys. J. 376 (1991) 782.

    Google Scholar 

  • S. M. Jefferies, T. L. Duvall, Jr., J. W. Harvey, Y. Osaki, and M. A. Pomerantz: ‘Characteristics of Intermediate-Degree Solarp-Mode Line Widths’,Astrophys. J. 377 (1991) 330.

    Google Scholar 

  • Y.-C. Kim, P. Demarque, and D. B. Guenther: ‘The Effect of the Mihalas, Hummer, and Däppen Equation of State and the Molecular Opacity on the Standard Solar Model’,Astrophys. J. 378 (1991) 407.

    Google Scholar 

  • J. A. Guzik and A. N. Cox: ‘Effects of Opacity and Equation of State on Solar Structure and Oscillations’,Astrophys. J. 381 (1991) 333.

    Google Scholar 

  • R. D. Rosenwald and G. F. Rabaey: ‘Application of the Continuous Orthonormalization and Adjoint Methods to the Computation of Solar Eigenfrequencies and Eigenfrequency Sensitivities’,Astrophys. J. Suppl. Ser. 77 (1991) 97.

    Google Scholar 

  • A. A. Pamyatnykh, S. V. Vorontsov, and W. Däppen: ‘A Calibration of Solar Envelope Models Using the Frequencies of Intermediate-Degree Solar Acoustic Oscillations’,Astron. Astrophys. 248 (1991) 263.

    Google Scholar 

  • M. Gabriel: ‘On High Degreef Modes’,Astron. Astrophys. 248 (1991) 277.

    Google Scholar 

  • T. Van Holst and P. Smeyers: ‘The QuantitiesD n,1 as Measures of Small Frequency Separations in the Sun and Their Origin’,Astron. Astrophys. 248 (1991) 647.

    Google Scholar 

  • B. Fleck and F. Schmitz: ‘The 3-Min Oscillations of the Solar Chromosphere — a Basic Physical Effect?’,Astron. Astrophys. 250 (1991) 235.

    Google Scholar 

  • C. J. Schrijver, A. Jimenez, and W. Däppen: ‘Observations of the Phase Differences between Irradiances and Velocity for Low-Degree Solar Acoustic Modes’,Astron. Astrophys. 251 (1991) 655.

    Google Scholar 

  • H. B. van der Raay: ‘The Sun as Seen by a Resonant Scattering Spectrometer’,Astron. Astrophys. 252 (1991) 366.

    Google Scholar 

  • S. V. Vorontsov: ‘Acoustic Theory of Acoustic Oscillations of the Sun and Stars’,Astron. Zh. 68 (1991) 808 (Soviet Astron.-A.J. 35 (1991) 400).

    Google Scholar 

  • A. G. Kosovichev and A. V. Fedorova: ‘Construction of a Seismic Model of the Sun’,Astron. Zh. 68 (1991) 1015 (Soviet Astron.-A.J. 35 (1991) 507).

    Google Scholar 

  • B. M. Nakaryakov, N. S. Petrukhin, and S. M. Fajnshtejn: ‘On Generation of Low-Frequency Pulsation in Magnetic Waveguides in the Solar Atmosphere’,Pisma Astron. Zh. 17 (1991) 1008 (Soviet Astron.-Letters 17 (1991) 423).

    Google Scholar 

  • G. Worrall: ‘Oscillations in the Solar Atmosphere: the 5-Min Peak as a Consequence of Wave Reflection at the Photosphere’,Monthly Notices Roy. Astron. Soc. 251 (1991) 427.

    Google Scholar 

  • Y. Elsworth, R. Howe, G. R. Isaak, C. P. McLeod, and R. New: ‘Low-1p-mode Solar Eigenfrequency Measurements from the Birmingham Network’,Monthly Notices Roy. Astron. Soc. 251 (1991) 7P.

    Google Scholar 

Particle Acceleration and Particle Beams

  • J. A. Miller: ‘Magnetohydrodynamic Turbulence Dissipation and Stochastic Proton Acceleration in Solar Flares’,Astrophys. J. 376 (1991) 342.

    Google Scholar 

  • P. J. Cargill: ‘The Interaction of Collisionless Shocks in Astrophysical Plasmas’,Astrophys. J. 376 (1991) 771.

    Google Scholar 

  • M.-B. Kallenrode and G. Wibberenz: ‘Particle Injection Following Solar Flares on 1980 May 28 and June 8: Evidence for Different Injection Time Histories in Impulsive and Gradual Events?,Astrophys. J. 376 (1991) 787.

    Google Scholar 

  • S. Riypoulos: ‘Subthreshold Stochastic Diffusion with Application to Selective Acceleration of3He in Solar Flares’,Astrophys. J. 381 (1991) 578.

    Google Scholar 

  • J. P. Raulin, R. F. Willson, A. Kerdraon, K.-L. Klein, K. R. Lang, and G. Trottet: ‘Acceleration of Electrons Outside Flares: Coronal Manifestation and Possible Origin’,Astrophys. J. 251 (1991) 298.

    Google Scholar 

  • Y. E. Litvinenko and B. V. Somov: ‘Electron Acceleration in Current Sheets in Solar Flares’,Pisma Astron. Zh. 17 (1991) 835 (Soviet Astron.-Letters 17 (1991) 353).

    Google Scholar 

  • M. Vandas: ‘Acceleration of keV-Electrons by a Nearly Perpendicular Shock Wave’,Bull. Astron. Inst. Czech. 42 (1991) 170.

    Google Scholar 

  • E. G. Zweibel and J.-F. de La Beaujardière: ‘Electron Acceleration by Magnetosonic Waves in Solar Flares’,Geophys. Res.-Letters 17 (1991) 2051.

    Google Scholar 

Particles, Proton Events

  • D. V. Reames, M.-B. Kallenrode, and R. G. Stone: ‘Multispacecraft Observations of Solar3He-Rich Events’,Astrophys. J. 380 (1991) 287.

    Google Scholar 

  • D. Ruffolo: ‘Interplanetary Transport of Decay Protons from Solar Flare Neutrons’,Astrophys. J. 382 (1991) 688.

    Google Scholar 

  • T. B. Chakravorti, T. K. Das, A. K. Sen, and M. K. Das Gupta: ‘Some Studies of Solar Proton Events in Relation to Active Region Characteristics’,Bull. Astron. Inst. Czech. 42 (1991) 165.

    Google Scholar 

  • L. Křivský, M. A. Soliman, S. Šimberová, and J. Flusser: ‘Proton Flare and Terrestrial Effects with Aurorae in the Minimum Phase of Solar Activity (January 1985)’,Bull. Astron. Inst. Czech. 42 (1991) 386.

    Google Scholar 

  • I. V. Kudryavtsev and Y. E. Charikov: ‘Kinetics of Fast Electrons in Ion-Acoustic Waves in the Turbulent Plasma of Solar Flares’,Astron. Zh. 68 (1991) 825 (Soviet Astron.-A.J. 35 (1991) 409).

    Google Scholar 

  • J. E. Humble, M. L. Duldig, D. F. Smart, and M. A. Shea: ‘Detection of 0.5–15 GeV Solar Protons on 29 September 1989 at Australian Stations’,Geophys. Res.-Letters 18 (1991) 737.

    Google Scholar 

  • M. A. Shea, D. F. Smart, M. D. Wilson, and E. O. Flückiger: ‘Possible Ground-Level Measurements of Solar Neutron Decay Protons during the 19 October 1989 Solar Cosmic Ray Event’,Geophys. Res.-Letters 18 (1991) 829.

    Google Scholar 

  • M. A. Shea, D. F. Smart, and K. R. Pyle: ‘Direct Solar Neutrons Detected by Neutron Monitors on 24 May 1990’,Geophys. Res.-Letters 18 (1991) 1655.

    Google Scholar 

Prominences and Filaments

  • E. G. Zweibel: ‘Evolution to Nonequilibrium in Simple Models of Prominence Filaments’,Astrophys. J. 376 (1991) 761.

    Google Scholar 

  • S. K. Antiochos and J. A. Klimchuk: ‘A Model for the Formation of Solar Prominences’,Astrophys. J. 378 (1991) 372.

    Google Scholar 

  • C. Ridgway, T. Amari, and E. R. Priest: ‘Prominence Sheets Supported by Constant-Current Force-Free Fields. I. Imposition of Normal Magnetic Field Components at the Current Sheet and the Photosphere’,Astrophys. J. 378 (1991) 773.

    Google Scholar 

  • E. Wiehr and G. Stellmacher: ‘Stokes-V in an Active Prominence’,Astron. Astrophys. 247 (1991) 379.

    Google Scholar 

  • B. Schmieder, J. Fontenla, and E. Tandberg-Hanssen: ‘A Microflare-Related Activation of a Filament Observed in Hα and CIV Lines’,Astron. Astrophys. 252 (1991) 343.

    Google Scholar 

  • B. Schmieder, M. A. Raadu, and J. E. Wilk: ‘Fine Structure of Solar Filaments. II. Dynamics of Threads and Footpoints’,Astron. Astrophys. 252 (1991) 353.

    Google Scholar 

Radio Emission

  • H. Zirin, B. M. Baumert, and G. J. Hurford: ‘The Microwave Brightness Temperature Spectrum of the Quiet Sun’,Astrophys. J. 370 (1991) 779.

    Google Scholar 

  • N. Gopalswamy, S. M. White, and M. R. Kundu: ‘Large-Scale Features of the Sun at 20 Centimeter Wavelength’,Astrophys. J. 379 (1991) 366.

    Google Scholar 

  • V. P. Maximov and I. A. Bakunina: ‘Change in the Sign of Circular Polarization of 5.2-Cm Microwave Emission from Active Regions’,Astron. Zh. 68 (1991) 394 (Soviet Astron.-A.J. 35 (1991) 194).

    Google Scholar 

  • Zhang Bairong and Ma Yuan: ‘Some Statistical Features of Solar Radio SVC in the Rising Branch of Cycle 22’,Chin. Astron. Astrophys. 15 (1991) 449.

    Google Scholar 

Radio Bursts

  • D. B. Melrose: ‘Emission at Cyclotron Harmonics Due to Coalescence ofz-Mode Waves’,Astrophys. J. 380 (1991) 256.

    Google Scholar 

  • J. Kurths, A. O. Benz, and M. J. Ashwanden: ‘The Attractor Dimension of Solar Decimetric Radio Pulsations’,Astron. Astrophys. 248 (1991) 270.

    Google Scholar 

  • M. Güdel, M. J. Ashwanden, and A. O. Benz: ‘The Association of Solar Millisecond Radio Spikes with Hard X-Ray Emission’,Astron. Astrophys. 251 (1991) 285.

    Google Scholar 

  • G. D. Flejshman and Y. E. Charikov: ‘Nonlinear Saturation of a Cyclotron Maser’,Astron. Zh. 68 (1991) 719 (Soviet Astron.-A.J. 35 (1991) 354).

    Google Scholar 

  • Y. F. Yurovskij: ‘Some Properties of Narrow-Band Millisecond Pulsations in Solar Radio Bursts at 2.5 and 2.85 GHz’,Pisma Astron. Zh. 17 (1991) 629 (Soviet Astron.-Letters 17 (1991) 268).

    Google Scholar 

  • A. Tlamicha: ‘Spectral Observations of Solar Radio Bursts in the Range of 2.0–4.5 Hz by a New Digital Radio Spectrometer’,Bull. Astron. Inst. Czech. 42 (1991) 257.

    Google Scholar 

  • M. Karlický: ‘The Negative Frequency Drift of Microwave Bursts Due to Collisional and Radiative Losses of Superthermal Electrons’,Bull. Astron. Inst. Czech. 42 (1991) 260.

    Google Scholar 

  • Qin Zhihai, Jiang Shuying, Wei Shuanglin, and Chen Yunxia: ‘Fast Fine Structure in Solar Radio Bursts at 3 Cm Waves’,Chin. Astron. Astrophys. 15 (1991) 362.

    Google Scholar 

  • Yao Jinxing: ‘Closed Loop Model of Turbulent Acceleration for the Gradual Phase of the Radio Burst of 1981 April 27’,Chin. Astron. Astrophys. 15 (1991) 408.

    Google Scholar 

  • Zhao Renyang, Jin Shengzhen, Fu Qijun, and Li Xiaocong: ‘MHD Oscillations in the Solar Spike Radiation’,Chin. Astron. Astrophys. 15 (1991) 439.

    Google Scholar 

Solar Cycle and Periodicity

  • Y.-M. Wang and N. R. Sheeley, Jr.: ‘Magnetic Flux Transport and the Sun's Dipole Moment: New Twists to the Babcock—Leighton Model’,Astrophys. J. 375 (1991) 761.

    Google Scholar 

  • Y.-M. Wang, N. R. Sheeley, Jr., and A. G. Nash: ‘A New Solar Cycle Model Including Meridional Circulation’,Astrophys. J. 383 (1991) 431.

    Google Scholar 

  • Z. Mouradian and I. Soru-Escaut: ‘On the Dynamics of the Large-Scale Magnetic Fields of the Sun and the Sunspot Cycle’,Astron. Astrophys. 251 (1991) 649.

    Google Scholar 

  • L. Paternò, D. Spadaro, R. A. Zappalà, and F. Zuccarello: ‘Angular Momentum Transport by Reynolds Stresses Determined from the Analysis of 100-Year Sunspot Motions and Its Variations with Solar Cycle’,Astron. Astrophys. 252 (1991) 337.

    Google Scholar 

  • M. Kopecký: ‘Forecast of the Maximum of the Next 11-Year Cycle of Sunspots No. 23’,Bull. Astron. Inst. Czech. 42 (1991) 157.

    Google Scholar 

  • M. Kopecký: ‘When Did the Latest Minimum of the 80-Year Sunspot Period Occur?’,Bull. Astron. Inst. Czech. 42 (1991) 158.

    Google Scholar 

  • V. Bumba: ‘Solar Active Longitude Recurring Every 28–29 Days Acting Differently in Low and Higher Latitudes’,Bull. Astron. Inst. Czech. 42 (1991) 381.

    Google Scholar 

Solar Evolution

  • A. I. Boothroyd, I.-J. Sackman, and W. A. Fowler: ‘Our Sun. II. Early Mass Loss of 0.1M⊙ and the Case of the Missing Lithium’,Astrophys. J. 377 (1991) 318.

    Google Scholar 

  • C. R. Proffitt and G. Michaud: ‘Gravitational Settling in Solar Models’,Astrophys. J. 380 (1991) 238.

    Google Scholar 

  • U. G. Jørgensen: ‘Advanced Stages in the Evolution of the Sun’,Astron. Astrophys. 246 (1991) 118.

    Google Scholar 

  • R. C. Wiens, D. S. Burnett, M. Neugebauer, and R. O. Pepin: ‘Solar-Wind Krypton and Solid/Gas Fractionation in the Early Solar Nebula’,Geophys. Res.-Letters 18 (1991) 207.

    Google Scholar 

  • T. E. Graedel, I.-J. Sackmann, and A. I. Boothroyd: ‘Early Solar Mass Loss: A Potential Solution of the Weak Sun Paradox’,Geophys. Res.-Letters 18 (1991) 1881.

    Google Scholar 

Solar Interior, Neutrinos

  • C.-X. Chen and M. L. Cherry: ‘Neutrino Oscillations and Solar Models’,Astrophys. J. 377 (1991) L105.

    Google Scholar 

  • J. Kaplan, F. M. de Volnay, C. Tao, and S. Turck-Chièze: ‘A Critical Look at Cosmions’,Astrophys. J. 378 (1991) 315.

    Google Scholar 

  • I. V. Moskalenko, S. Karakula, and W. Tkaczyk: ‘The Sun as the Source of VHE Neutrinos’,Astron. Astrophys. 248 (1991) L5.

    Google Scholar 

  • S. V. Vorontsov and H. Shibahashi: ‘Asymptotic Inversion of the Solar Oscillation Frequencies: Sound Speed in the Solar Interior’,Publ. Astron. Soc. Japan 43 (1991) 739.

    Google Scholar 

Solar Irradiance

  • J. K. Lawrence, G. A. Chapman, and S. R. Walton: ‘Weak Magnetic Fields and Solar Irradiance Variations’,Astrophys. J. 375 (1991) 771.

    Google Scholar 

  • J. R. Kuhn and K. G. Libbrecht: ‘Nonfacular Solar Luminosity Variations’,Astrophys. J. 381 (1991) L35.

    Google Scholar 

  • P. Foukal, K. Harvey, and F. Hill: ‘Do Changes in the Photospheric Magnetic Network Cause the 11-Year Variation of Total Solar Irradiance’,Astrophys. J. 383 (1991) L89.

    Google Scholar 

Solar Limb

  • C. A. Lindsey and T. L. Roellig: ‘Telescope Beam-Profile Diagnostics and the Solar Limb’,Astrophys. J. 375 (1991) 414.

    Google Scholar 

  • J. C. LoPresto, C. Schrader, and A. K. Pierce: ‘Solar Gravitational Redshift from the Infrared Oxygen Triplet’,Astrophys. J. 376 (1991) 757.

    Google Scholar 

  • T. L. Roelig, E. E. Becklin, J. T. Jefferies, G. A. Kopp, C. A. Lindsey, F. Q. Orrall, and M. W. Werner: ‘Submillimeter Solar Limb Profiles Determined from Observations of the Total Solar Eclipse of 1988 March 18’,Astrophys. J. 381 (1991) 288.

    Google Scholar 

  • E. A. Makarova, E. M. Roshchina, and A. P. Sarychev: ‘Average Data on Solar Limb Darkening in the Quasi-Continuum in the 300–2400 nm Spectral Range’,Astron. Zh. 68 (1991) 885 (Soviet Astron.-A.J. 35 (1991) 441).

    Google Scholar 

Solar Rotation

  • A. Gould: ‘Does the Solar Interior Rotate Rigidly?’,Astrophys. J. 377 (1991) 707.

    Google Scholar 

  • B. R. Durney: ‘Observational Constraints on Theories of the Solar Differential Rotation’,Astrophys. J. 378 (1991) 378.

    Google Scholar 

  • N. A. Plieva: ‘Differential Rotation and Isorotation Surfaces in a Slowly Rotating Convective Envelope of the Sun’,Pisma Astron. Zh. 17 (1991) 741 (Soviet Astron.-Letters 17 (1991) 314).

    Google Scholar 

Solar-Terrestrial and Interplanetary Relations

  • K. I. Churyumov and V. S. Filonenko: ‘Solar Activity Influence upon the Brightness Curves of Comet Churyumov—Gerasimenko (1982 VIII) and Comet Halley (1986 III)’,Pisma Astron. Zh. 17 (1991) 1135 (Soviet Astron.-Letters 17 (1991) 470).

    Google Scholar 

  • V. Bumba: ‘Is the Reccurent Enhanced Geomagnetic Activity Preceding the Sunspot Minimum Related to Magnetic Fields of the New or Old Activity Cycle?’,Bull. Astron. Inst. Czech. 42 (1991) 161.

    Google Scholar 

  • Feng Bo: ‘Solar Flare and Sudden Change of Earth's Rotation’,Chin. Astron. Astrophys. 15 (1991) 329.

    Google Scholar 

  • S. W. Bougher and R. G. Roble: ‘Comparative Terrestrial Planet Thermospheres. 1. Solar Cycle Variation of Global Mean Temperatures’,J. Geophys. Res. 96 (1991) 11045.

    Google Scholar 

  • A. J. Kliore, J. G. Luhmann, and M. H. G. Zhang: ‘The Effect of the Solar Cycle on the Maintenance of the Nightside Ionosphere of Venus’,J. Geophys. Res. 96 (1991) 11065.

    Google Scholar 

  • D. S. Intriligator and M. Dryer: ‘A Kick from the Solar Wind as the Cause of Comet Halley's February 1991 Flare’,Nature 353 (1991) 407.

    Google Scholar 

Solar-Type Stars

  • D. R. Soderblom, D. K. Duncan, and D. R. H. Johnson: ‘The Chromospheric Emission-Age Relation for Stars of the Lower Main Sequence and Its Implications for the Star Formation Rate’,Astrophys. J. 375 (1991) 722.

    Google Scholar 

  • K. B. MacGregor and M. Brenner: ‘Rotational Evolution of Solar-Type Stars. I. Main-Sequence Evolution’,Astrophys. J. 376 (1991) 204.

    Google Scholar 

  • J.-P. Caillault, O. Vilhu, and J. L. Linsky: ‘IUE Observations of Solar-Type Stars in the Pleiades and the Hyades’,Astrophys. J. 383 (1991) 594.

    Google Scholar 

  • A. Duquennoy and M. Mayor: ‘Multiplicity among Solar-Type Stars in the Solar Neighbourhood. II. Distribution of the Orbital Elements in an Unbiased Sample’,Astron. Astrophys. 248 (1991) 485.

    Google Scholar 

  • R. Mewe: ‘X-Ray Spectroscopy of Stellar Coronae’,Astron. Astrophys. Rev. 3 (1991) 127.

    Google Scholar 

  • G. J. Frey, B. Grim, D. S. Hall, P. Mattingly, S. Robb, J. Wood, and K. Zeigler: ‘The Rotation Period of ε Eri from Photometry of Its Starspots’,Astron. J. 102 (1991) 1813.

    Google Scholar 

  • G. F. Porto de Mello and L. da Silva: ‘On the Physical Existence of the ξ Her Moving Group: a Detailed Analysis ofø 2 Pavonis,Astron. J. 102 (1991) 1816.

    Google Scholar 

  • R. L. Jenning and N. O. Weiss: ‘Symmetry Breaking in Stellar Dynamos’,Monthly Notices Roy. Astron. Soc. 252 (1991) 249.

    Google Scholar 

Solar Wind

  • E. N. Parker: ‘The Phase Mixing of Alfv00E9;n Waves, Coordinated Modes, and Coronal Heating’,Astrophys. J. 376 (1991) 355.

    Google Scholar 

  • K. Tsinganos and E. Trussoni: ‘Analytical Studies of Collimated Winds. II. Topologies of 2-D Helicoidal MHD Solutions’,Astron. Astrophys. 249 (1991) 156.

    Google Scholar 

  • Ko Chungming: ‘Cosmic-Ray-Modified Stellar Winds. IV. The Effect of Self-Generated Alfv00E9;n Waves’,Astron. Astrophys. 251 (1991) 713.

    Google Scholar 

  • D. Odstrčil: ‘MHD Parameters of the Steady-State Solar Wind at 1 AU as Functions of Parameters at 18 Rs’,Bull. Astron. Inst. Czech. 42 (1991) 263.

    Google Scholar 

  • W. A. Coles, R. Esser, U.-P. Lovhaug, and J. Markkanen: ‘Comparison of Solar Wind Velocity Measurements with a Theoretical Acceleration Model’,J. Geophys. Res. 96 (1991) 13849.

    Google Scholar 

  • N. R. Sheeley, Jr., E. T. Swanson, and Y.-M. Wang: ‘Out-of-Ecliptic Tests of the Inverse Correlation between Solar Wind Speed and Coronal Expansion Factor’,J. Geophys. Res. 96 (1991) 13861.

    Google Scholar 

  • S. Arya and J. W. Freeman: ‘Estimates of Solar Wind Velocity Gradients between 0.3 and 1 AU Based on Velocity Probability Distributions from Helios 1 at Perihelion and Aphelion’,J. Geophys. Res. 96 (1991) 14183.

    Google Scholar 

  • A. J. Kliore and J. G. Luhman: ‘Solar Cycle Effects on the Structure of the Electron Density Profiles in the Dayside Ionosphere of Venus’,J. Geophys. Res. 96 (1991) 21281.

    Google Scholar 

  • G. A. Bowe, M. A. Haogood, M. Lockwood, and D. M. Willis: ‘Short-Term Variability of Solar Wind Number Density, Speed and Dynamic Pressure as a Function of the Interplanetary Magnetic Field Components: a Survey over Two Solar Cycles’,Geophys. Res.-Letters 17 (1991) 1825.

    Google Scholar 

  • H. R. Srauss: ‘Nonresonant Absorption of Shear Alfv00E9;n Waves’,Geophys. Res.-Letters 18 (1991) 77.

    Google Scholar 

  • M. Vellante and U. Villante: ‘Relationship between Field Line Resonance at Low Geomagnetic Latitudes and Solar Wind Structures’,Geophys. Res.-Letters 18 (1991) 1501.

    Google Scholar 

Solar Wind Disturbances

  • Y. C. Whang: ‘Parametric Study of the Formation of Magnetohydrodynamic Shocks. II. Slow Shocks’,Astrophys. J. 377 (1991) 255.

    Google Scholar 

  • L. J. Lanzerotti, R. E. Gold, D. J. Thomson, R. E. Decker, C. G. Maclennan, and S. K. Krimigis: ‘Statistical Properties of Shock-Accelerated Ions in the Outer Heliosphere’,Astrophys. J. 380 (1991) L93.

    Google Scholar 

  • Y. C. Whang: ‘Parametric Study of the Formation of Magnetohydrodynamic Shocks. III. Fast and Slow Shocks’,Astrophys. J. 381 (1991) 559.

    Google Scholar 

  • D. J. Mullan: ‘Survival of Discrete Structures in the Solar Wind’,Astron. Astrophys. 248 (1991) 256.

    Google Scholar 

  • D. Odstrčil: ‘Numerical Simulation of the April 24, 1981 Interplanetary Shock Wave’,Bull. Astron. Inst. Czech. 42 (1991) 181.

    Google Scholar 

  • S. V. Bogovalov: ‘Boundary Conditions in the Problem of Plasma Ejection from the Magnetosphere of an Axisymmetric Rotator’,Astron. Zh. 68 (1991) 1227 (Soviet Astron.-A.J. 35 (1991) 616).

    Google Scholar 

  • A. G. Kosovichev and T. V. Stepanova: ‘Numerical Simulation of Shocks in the Heliosphere’,Astron. Zh. 68 (1991) 1283 (Soviet Astron.-A.J. 35 (1991) 646).

    Google Scholar 

  • H. V. Cane, I. G. Richardson, and K. Harvey: ‘Filament Disappearances and Shocks of May 1979’,J. Geophys. Res. 96 (1991) 19525.

    Google Scholar 

  • L. F. Burlaga: ‘Multifractal Structure of Speed Fluctuations in Recurrent Streams at 1 AU and near 6 AU’,Geophys. Res.-Letters 18 (1991) 1651.

    Google Scholar 

  • K. J. Trattner and M. Scholer: ‘Diffuse Alpha Particles Upstream of Simulated Quasi-parallel Supercritical Collisionless Shocks’,Geophys. Res.-Letters 18 (1991) 1817.

    Google Scholar 

Spectra-Abundances

  • E. Bi00E9;mont, A. Hibbert, M. Godefroid, N. Vaeck, and B. C. Fawcett: ‘Accurate Oscillator Strengths of Astrophysical Interest for Neutral Oxygen’,Astrophys. J. 375 (1991) 818.

    Google Scholar 

  • K. J. H. Phillips and U. Feldman: ‘The Iron-to-Calcium Abundance Ratio in the 20 × 106 K Plasma of Medium and Large Solar Flares’,Astrophys. J. 379 (1991) 401.

    Google Scholar 

  • G. A. Doschek, K. P. Dere, and P. A. Lund: ‘Relative Abundances in the Lower Solar Transition Region’,Astrophys. J. 381 (1991) 583.

    Google Scholar 

  • D. V. Reames, I. G. Richardson, and L. M. Barbier: ‘On the Differences in Element Abundances of Energetic Ions from Corotating Events and from Large Solar Events’,Astrophys. J. 382 (1991) L43.

    Google Scholar 

  • E. Bi00E9;mont, M. Baudoux, R. L. Kurucz, W. Ansbacher, and E. H. Pinnington: ‘The Solar Abundance of Iron: a “Final” Word,’,Astron. Astrophys. 249 (1991) 539.

    Google Scholar 

  • H. Holweger, A. Bard, A. Kock, and M. Kock: ‘A Redetermination of the Solar Iron Abundance Based on New FeI Oscillator Strengths’,Astron. Astrophys. 249 (1991) 545.

    Google Scholar 

  • A. Shemi: ‘The High Ne/C and Ne/O Abundance Ratios in the Footpoints of Solar Flares’,Monthly Notices Roy. Astron. Soc. 251 (1991) 221.

    Google Scholar 

  • M. N. Rao, D. H. Garisson, D. D. Bogard, G. Badhwar, and A. V. Murali: ‘Composition of Solar Flare Noble Gases Preserved in Meteorite Parent Body Regolith’,J. Geophys. Res. 96 (1991) 19321.

    Google Scholar 

Spectra-Line Formation and Diagnostics

  • A. H. Gabriel, F. Bely-Dubau, P. Faucher, and L. W. Acton: ‘The OVII Soft X-Ray Spectrum and Its Application to Hot Plasmas in Astrophysics’,Astrophys. J. 378 (1991) 438.

    Google Scholar 

  • E. S. Chang, E. H. Avrett, P. J. Mauas, R. W. Noyes, and R. Loeser: ‘Formation of the Infrared Emission Lines of MgI in the Solar Atmosphere’,Astrophys. J. 379 (1991) L79.

    Google Scholar 

  • F. P. Keenan, P. L. Dufton, L. K. Harra, E. S. Conlon, K. A. Berrington, A. E. Kingston, and K. G. Widing: ‘Improved Line Ratio Calculations Involving Δn = 1(2–3) Transitions in OV and a Reanalysis of Skylab Observations of Solar Flares’,Astrophys. J. 382 (1991) 349.

    Google Scholar 

  • E. S. Chang and W. G. Schoenfeld: ‘Electric Field Strengths from the Solar 12 Micron Lines’,Astrophys. J. 383 (1991) 450.

    Google Scholar 

  • K. P. Raju, J. N. Desai, T. Chandrasekhar, and N. M. Ashok: ‘The Excitation Mechanism of [FexIV] 5303 Å Line in the Inner Regions of Solar Corona’,J. Astrophys. Astron. 12 (1991) 311.

    Google Scholar 

  • S. D. Anstee and B. J. O'Mara: ‘An Investigation of Brueckner's Theory of Line Broadening with Application to the Sodium D Lines’,Monthly Notices Roy. Astron. Soc. 253 (1991) 549.

    Google Scholar 

  • R. R. Meier: ‘The Scattering Rate of Solar 834 Å Radiation by Magnetospheric O+ and O++’,Geophys. Res.-Letters 17 (1991) 1613.

    Google Scholar 

Spectra-Line Identification

  • J. T. Jefferies: ‘The Solar MgI Spectrum from ATMOS. I. Identification and Preliminary Discussion’,Astrophys. J. 377 (1991) 337.

    Google Scholar 

  • F. P. Keenan, P. L. Dufton, E. S. Conlon, M. B. Boylan, A. E. Kingston, and K. G. Widing: ‘The 3s 23p 2 P − 3s 3p 2 4 P Intercombination lines of FeXIV in the Sun’,Astrophys. J. 379 (1991) 406.

    Google Scholar 

  • G. P. Malik, L. K. Pande, and V. S. Varma: ‘On Solar Emission Lines’,Astrophys. J. 379 (1991) 788.

    Google Scholar 

  • M. Geller, A. J. Sauval, N. Grevesse, C. B. Farmer, and R. H. Norton: ‘First Identification of Pure Rotation Lines of NH in the Infrared Solar Spectrum’,Astron. Astrophys. 249 (1991) 550.

    Google Scholar 

  • K. Sinha and B. M. Tripathi: ‘Is Ionized CH Present in the Solar Spectrum?’,Bull. Astron. Soc. India 19 (1991) 81.

    Google Scholar 

  • L. A. Hall and G. P. Anderson: ‘High-Resolution Solar Spectrum between 2000 and 3100 Å’,J. Geophys. Res. 96 (1991) 12927.

    Google Scholar 

Spicules

  • A. C. Sterling and J. T. Mariska: ‘Numerical Simulation of the Rebound Shock Model for Solar Spicules’,Astrophys. J. 349 (1991) 647.

    Google Scholar 

  • S. R. Habbal and R. D. Gonzalez: ‘First Observations of Macrospicules at 4.8 GHz at the Solar Limb in Polar Coronal Holes’,Astrophys. J. 376 (1991) L25.

    Google Scholar 

  • R. A. Gulyaev: ‘Are Spicules a Source of Coronal Matter?’,Astron. Zh. 68 (1991) 1108 (Soviet Astron.-A.J. 35 (1991) 556).

    Google Scholar 

Sunspots

  • T. J. Bogdan and D. C. Fox: ‘Multiple Scattering of Acoustic Waves by a Pair of Uniformly Magnetized Flux Tubes’,Astrophys. J. 379 (1991) 758.

    Google Scholar 

  • K. S. Balasubramaniam and E. A. West: ‘Vector Magnetic Fields in Sunspots. I. Stokes Profiles Analysis Using the Marshall Space Flight Center Magnetograph’,Astrophys. J. 382 (1991) 699.

    Google Scholar 

  • G. Lustig and H. Wohl: ‘The Meridional Motions of Stable Recurrent Sunspots’,Astron. Astrophys. 249 (1991) 528.

    Google Scholar 

  • D. Degenhardt and E. Wiehr: ‘Spatial Variation of the Magnetic Field Inclination in a Sunspot Penumbra’,Astron. Astrophys. 252 (1991) 821.

    Google Scholar 

  • M. M. Molodenskij, L. I. Starkova, and B. P. Filippov: ‘Determination of the Parameters of Sunspot Magnetic Fields from the Structure of the Superpenumbra’,Astron. Zh. 68 (1991) 612 (Soviet Astron.-A.J. 35 (1991) 300).

    Google Scholar 

  • A. A. Solovev: ‘Area and Magnetic Field of a Sunspot during Slow Dissipation’,Astron. Zh. 68 (1991) 624 (Soviet Astron.-A.J. 35 (1991) 306).

    Google Scholar 

  • L. M. Zelenyj and A. V. Milanov: ‘Fractal Properties of Sunspots’,Pisma Astron. Zh. 17 (1991) 1013 (Soviet Astron.-Letters 17 (1991) 4251).

    Google Scholar 

  • M. Sobotka, S. Šimberová, and V. Bumba: ‘Photometry of the Umbral Structure of a Fast-Developing Sunspot’,Bull. Astron. Inst. Czech. 42 (1991) 250.

    Google Scholar 

  • A. Antalová: ‘The Relation of the Sunspot Magnetic Field and Penumbra-Umbra Radius Ratio’,Bull. Astron. Inst. Czech. 42 (1991) 316.

    Google Scholar 

  • K. Sinha and B. M. Tripathi: ‘Evolution of Sunspots Seen in Molecular Lines. I.’,Bull. Astron. Soc. India 19 (1991) 13.

    Google Scholar 

  • K. Sinha and B. M. Tripathi: ‘Evolution of Sunspots Seen in Molecular Lines. II.’,Bull. Astron. Soc. India 19 (1991) 23.

    Google Scholar 

  • Zhou Daoqi: ‘An Explanation of the Dimensions of Penumbral Filaments’,Chin. Astron. Astrophys. 15 (1991) 453.

    Google Scholar 

  • V. A. Osherovich and H. A. Garcia: ‘Electric Current in a Unipolar Sunspot with an Untwisted Field’,Geophys. Res.-Letters 17 (1991) 2273.

    Google Scholar 

Transition Region

  • D. T. Woods and T. E. Holzer: ‘The Effects of Mass Flow on the Temperature and Abundance Structure of the Solar Transition Region’,Astrophys. J. 375 (1991) 800.

    Google Scholar 

  • J. M. Fontenla, E. H. Avrett, and R. Loeser: ‘Energy Balance in the Solar Transition Region. II. Effects of Pressure and Energy Input on Hydrostatic Models’,Astrophys. J. 377 (1991) 712.

    Google Scholar 

  • G. Roumeliotis: ‘Joule Heating as an Explanation for the Differential Emission Measure Structure and Systematic Redshifts in the Sun's Lower Transition Region’,Astrophys. J. 379 (1991) 392.

    Google Scholar 

  • R. G. Athay and K. P. Dere: ‘Chromospheric and Transition Region Diagnostics Using Emission-Line Intensities’,Astrophys. J. 379 (1991) 776.

    Google Scholar 

  • R. G. Athay and K. P. Dere: ‘Velocity Gradients in the Chromosphere-Corona Transition Region’,Astrophys. J. 381 (1991) 323.

    Google Scholar 

  • D. Spadaro, S. K. Antiochos, and J. T. Mariska: ‘Nonequilibrium Ionization Effects in Asymmetrically Heated Loops’,Astrophys. J. 382 (1991) 338.

    Google Scholar 

X-Rays

  • R. M. Winglee, A. L. Kiplinger, D. M. Zarro, G. A. Dulk, and J. R. Lemen: ‘Interrelation of Soft and Hard X-Ray Emissions during Solar Flares. I. Observations’,Astrophys. J. 375 (1991) 366.

    Google Scholar 

  • R. M. Winglee, G. A. Dulk, P. L. Bornmann, and J. C. Brown: ‘Interrelation of Soft and Hard X-Ray Emissions during Solar Flares. II. Simulation Model’,Astrophys. J. 375 (1991) 382.

    Google Scholar 

  • M. Herant, F. Pardo, E. Spiller, and L. Golub: ‘Flares Observed by the Normal Incidence X-Ray Telescope on 1989 September 11’,Astrophys. J. 376 (1991) 797.

    Google Scholar 

  • G. Roumeliotis and A. G. Emslie: ‘Magnetohydrodynamics of an Impulsively Heated, Hard X-Ray Emitting Filament’,Astrophys. J. 377 (1991) 685.

    Google Scholar 

  • J. M. McTiernan and V. Petrosian: ‘Center-to-Limb Variations of Characteristics of Solar Flare Hard X-Ray and Gamma-Ray Emission’,Astrophys. J. 379 (1991) 381.

    Google Scholar 

  • J. T. Mariska and D. M. Zarro: ‘Soft X-Ray Emission from Electron-Beam-Heated Solar Flares’,Astrophys. J. 381 (1991) 572.

    Google Scholar 

  • K. G. McClements and N. de B. Baynes: ‘Solar Hard X-Ray Emission Resulting from an Initially Homogeneous and Isotropic Coronal Electron Population’,Astron. Astrophys. 245 (1991) 262.

    Google Scholar 

  • S. J. Tappin: ‘Do All Solar Flares Have X-Ray Precursors?’,Astron. Astrophys. Suppl. Ser. 87 (1991) 277.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

About this article

Cite this article

List of papers from other journals. Sol Phys 148, 393–405 (1993). https://doi.org/10.1007/BF00645099

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645099

Navigation