Advertisement

Journal of Solution Chemistry

, Volume 10, Issue 4, pp 269–279 | Cite as

Thermodynamics of the dissociation of Bis H+ in seawater from 5 to 40°C

  • Roger G. Bates
  • James G. Calais
Article

Abstract

Electromotive-force measurements of cells without transference were used to determine the dissociation constant of the protonated form of the weak base 2-amino-2-methyl-1, 3-propanediol (Bis) in synthetic seawaters corresponding to salinities of 20, 35, and 45‰. Hydrogen electrodes and silver-silver chloride electrodes were used, together with standard potentials determined in an earlier investigation. The pK increases in linear fashion with the salinity (S) of the medium, for values of S from 0 to 45‰. The solvent effect is given by 8.802+0.00378S at 25°C with a mean deviation of 0.001. The medium effect of seawater on ΔH° at 25°C is less than 200 cal-mol−1 and less than 0.2 cal-oK-mol−1 on ΔS°.

Key words

Acidic dissociation Bis dissociation dissociation constant ion-ion interactions ionization seawater thermodynamics of dissociation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Bates and H. B. Hetzer,J. Phys. Chem. 65, 667 (1961).Google Scholar
  2. 2.
    R. W. Ramette, C. H. Culberson, and R. G. Bates,Anal. Chem. 49, 867 (1977).Google Scholar
  3. 3.
    W. H. Smith Jr., and D. W. Hood, inRecent Advances in the Fields of Hydrosphere, Atmosphere, and Nuclear Geochemistry, (Maruzen Co., Ltd., Tokyo, 1964), p. 185.Google Scholar
  4. 4.
    I. Hansson,Deep-Sea Res. 20, 479 (1973).Google Scholar
  5. 5.
    R. A. Durst and B. R. Staples,Clin. Chem. 18, 206 (1972).Google Scholar
  6. 6.
    H. B. Hetzer and R. G. Bates,J. Phys. Chem. 66, 308 (1962).Google Scholar
  7. 7.
    K. H. Khoo, C. H. Culberson, and R. G. Bates,J. Solution Chem. 6, 281 (1977).Google Scholar
  8. 8.
    D. R. Kester and R. M. Pytkowicz,Geochim. Cosmochim. Acta 34, 1039 (1970).Google Scholar
  9. 9.
    K. H. Khoo, R. W. Ramette, C. H. Culberson, and R. G. Bates,Anal. Chem. 49, 29 (1977).Google Scholar
  10. 10.
    R. G. Bates,Determination of pH, Theory and Practice, 2nd ed. (John Wiley & Sons, Inc., New York, 1973), Chap. 10.Google Scholar
  11. 11.
    R. A. Robinson,J. Mar. Biol. Assoc. U.K. 33, 449 (1954).Google Scholar
  12. 12.
    R. G. Bates and R. A. Robinson,J. Solution Chem. 9, 455 (1980).Google Scholar
  13. 13.
    R. G. Bates and V. E. BowerJ. Res. Natl. Bur. Stand. 53, 283 (1954).Google Scholar
  14. 14.
    R. G. Bates,Determination of pH, Theory and Practice, 2nd ed. (John Wiley & Sons Inc., New York, 1973), pp.449–450.Google Scholar
  15. 15.
    A. G. Dickson and J. P. Riley,Mar. Chem. 7, 89 (1979).Google Scholar
  16. 16.
    C. H. Culberson and R. M. Pytkowicz,Mar. Chem. 1, 309 (1973).Google Scholar
  17. 17.
    I. Hansson, Ph.D. thesis, University of Goteborg, 1972.Google Scholar
  18. 18.
    R. G. Bates and C. H. Culberson, inThe Fate of Fossil Fuel CO 2 in the Oceans, N. R. Andersen and A. Malahoff, eds (Plenum Publ. Corp., New York, 1977), p. 45.Google Scholar
  19. 19.
    D. J. G. Ives and P. G. N. Moseley,J. Chem. Soc., Faraday Trans. I 72, 1132 (1976).Google Scholar
  20. 20.
    N. W. PleaseBiochem. J. 56, 196 (1954).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • Roger G. Bates
    • 1
  • James G. Calais
    • 1
  1. 1.Department of ChemistryUniversity of FloridaGainesville

Personalised recommendations