Advertisement

Journal of Solution Chemistry

, Volume 15, Issue 6, pp 519–529 | Cite as

Use of the semi-equilibrium dialysis method in studying the thermodynamics of solubilization of organic compounds in surfactant micelles. Systemn-hexadecylpyridinium chloride-phenol-water

  • George A. Smith
  • Sherril D. Christian
  • Edwin E. Tucker
  • John F. Scamehorn
Article

Abstract

The semi-equilibrium dialysis method has been used to infer solubilization equilibrium constants or, alternatively, activity coefficients of solutes solubilized into micelles of aqueous surfactant solutions. Methods are described for inferring the concentrationa of monomers of the organic solute and of the surfactant on both sides of the dialysis membrane, under conditions where the organic solute is in equilibrium with both the high-concentration (retentate) and low-concentration (permeate) solutions. By using a form of the Gibbs-Duhem equation, activity coefficients of both phenol (the solubilizate) and n-hexadecylpyridinium chloride (the surfactant) are obtained for aqueous solutions at 25°C throughout a wide range of relative compositions of surfactant and solubilizate within the micelle. The apparent solubilization constant, K=[solubilized phenol]/([monomeric phenol][micellar surfactant]), is found to decrease significantly as the mole fraction of phenol in the micelle increases.

Key words

Solubilization constant dialysis surfactants micelles activity coefficients n-hexadecylpyridinium chloride phenol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. D. Christian, E. E. Tucker, G. A. Smith, and J. F. Scamehorn,Langmuir 1, 564 (1985).Google Scholar
  2. 2.
    S. D. Christian, E. E. Tucker, G. A. Smith, and D. S. Bushong,J. Colloid Interface Science, in press.Google Scholar
  3. 3.
    E. E. Tucker and S. D. Christian,Faraday Symp. Chem. Soc. 17, 11 (1982).Google Scholar
  4. 4.
    E. E. Tucker and S. D. Christian,J. Colloid Interface Sci. 104, 562 (1985).Google Scholar
  5. 5.
    S. D. Christian, E. E. Tucker, and E. H. Lane,J. Colloid Interface Sci. 84, 423 (1981).Google Scholar
  6. 6.
    S. D. Christian, L. S. Smith, D. S. Bushong, and E. E. Tucker,J. Colloid Interface Sci. 89, 514 (1982).Google Scholar
  7. 7.
    S. J. Dougherty and J. C. Berg,J. Colloid Interface Sci. 48, 110 (1974).Google Scholar
  8. 8.
    A. Goto and F. Endo,J. Colloid Interface Sci. 66, 26 (1978).Google Scholar
  9. 9.
    L.-N. Lin, Ph.D. Dissertation, The University of Oklahoma, 1975.Google Scholar
  10. 10.
    D. S. Bushong, Ph.D. Dissertation, The University of Oklahoma, 1985.Google Scholar
  11. 11.
    R. S. Hansen and F. A. Miller,J. Phys. Chem. 58, 193 (1954).Google Scholar
  12. 12.
    S. D. Christian and E. E. Tucker,American Laboratory 14 (8), 36 and14 (9), 31 (1982).Google Scholar
  13. 13.
    M. B. King,Phase Equilibrium in Mixtures, (Pergamon, Oxford, 1969), p. 260.Google Scholar
  14. 14.
    C. Tanford,J. Phys. Chem. 76, 3020 (1972).Google Scholar
  15. 15.
    P. Mukerjee,Pure and Appl. Chem. 52, 1317 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • George A. Smith
    • 1
    • 2
  • Sherril D. Christian
    • 1
    • 2
  • Edwin E. Tucker
    • 1
    • 2
  • John F. Scamehorn
    • 3
  1. 1.Department of ChemistryThe University of OklahomaNorman
  2. 2.Institute for Applied Surfactant ResearchThe University of OklahomaNorman
  3. 3.School of Chemical Engineering and Materials ScienceThe University of OklahomaNorman

Personalised recommendations