Skip to main content
Log in

Thermodynamics of aqueous solutions of the alkali metal sulfates

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The available thermodynamic properties for aqueous solutions of each of the alkali metal sulfates have been combined and analyzed within the framework of the ion interaction model at temperatures up to 225°C. It was necessary to set α1 equal to 1.4kg1/2-mol−1/2 in order to obtain a satisfactory fit. The temperature dependence of the ion interaction parameters was given the functional form used by Rogers and Pitzer(1) in their study of Na2SO4(aq). With few exceptions, it was possible to reproduce the available thermodynamic data for aqueous solutions of the alkali metal to within the estimated experimental error. Thermodynamic results for Na2SO4(aq) appear to be adequate in this temperature range, but enthalpy and heat capacity data for the other alkali metal sulfate solutions are conspicuously lacking. Activity coefficients of these electrolytes decreased to less than 0.1 at moderate molalities at the higher temperatures, and their order changed with increasing temperature; two results which could be due to a combination of hydration and association effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. Z. Rogers and K. S. Pitzer,J. Phys. Chem. 85, 2886 (1981).

    Google Scholar 

  2. H. F. Holmes and R. E. Mesmer,J. Chel. Thermodyn., in press (1986).

  3. J. E. Mayrath and R. H. Wood,J. Chem. Eng. Data 28, 56 (1983).

    Google Scholar 

  4. O. N. Bhatnagar and A. N. Campbell,Can. J. Chem. 59, 123 (1981).

    Google Scholar 

  5. O. N. Bhatnagar and A. N. Campbell,Can. J. Chem. 60, 1754 (1982).

    Google Scholar 

  6. K. S. Pitzer and L. Brewer, revised edition ofThermodynamics by G. N. Lewis and M. Randall, (McGraw-Hill, New York, N.Y., 1961).

    Google Scholar 

  7. L. F. Silvester and K. S. Pitzer,J. Phys. Chem. 81, 1822 (1977).

    Google Scholar 

  8. H. F. Holmes and R. E. Mesmer,J. Phys. Chem. 87, 1242 (1983).

    Google Scholar 

  9. K. S. Pitzer, J. C. Peiper, and R. H. Busey,J. Phys. Chem. Ref. Data 13, 1 (1984).

    Google Scholar 

  10. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  11. D. J. Bradley and K. S. Pitzer,J. Phys. Chem. 83, 1599 (1979).

    Google Scholar 

  12. G. Scatchard, B. Vonnegut, and D. W. Beaumont,J. Chem. Phys. 33, 1292 (1960).

    Google Scholar 

  13. R. A. Robinson, J. M. Wilson, and R. H. Stokes,J. Am. Chem. Soc. 63, 1011 (1941).

    Google Scholar 

  14. P. J. Thompson, D. E. Smith, and R. H. Wood,J. Chem. Engr. Data 19, 386 (1974).

    Google Scholar 

  15. W. Kangro and A. Groeneveld,Z. Phys. Chem. (Frankfurt)32, 110 (1962).

    Google Scholar 

  16. A. Indelli,Ric. Sci. 23, 2258 (1953).

    Google Scholar 

  17. E. Lange and H. Streeck,Z. Phys. Chem. (Leipzig)A157, 1 (1931).

    Google Scholar 

  18. J. A. Rard and D. G. Miller,J. Chem. Engr. Data 26, 33 (1981).

    Google Scholar 

  19. J. E. Mayrath and R. H. Wood,J. Chem. Engr. Data 28, 56 (1983).

    Google Scholar 

  20. C. S. Patterson, L. O. Gilpatrick, and B. A. Soldano,J. Chem. Soc. 2730 (1960).

  21. B. A. Soldano and C. S. Patterson,J. Chem. Soc. 937 (1962).

  22. C. W. Childs and R. F. Platford,Aust. J. Chem. 24, 2487 (1971).

    Google Scholar 

  23. R. J. Platford,J. Chem. Engr. Data 18, 215 (1973).

    Google Scholar 

  24. K. L. Hellams, C. S. Patterson, B. H. Prentice, III, and M. J. Taylor,J. Chem. Engr. Data 10, 323 (1965).

    Google Scholar 

  25. W. T. Humphries, C. F. Hohrt, and C. S. Patterson,J. Chem. Engr. Data 13, 327 (1968).

    Google Scholar 

  26. J. T. Moore, W. T. Humphries, and C. S. Patterson,J. Chem. Engr. Data 17, 180 (1972).

    Google Scholar 

  27. W. E. Wallace and A. L. Robinson,J. Amer. Chem. Soc. 63, 958 (1941).

    Google Scholar 

  28. W. H. Leung and F. J. Millero,J. Solution Chem. 4, 145 (1975).

    Google Scholar 

  29. H. S. Harned and J. C. Hecker,J. Am. Chem. Soc. 56, 650 (1934).

    Google Scholar 

  30. M. Randall and F. D. Rossini,J. Am. Chem. Soc. 51, 323 (1929).

    Google Scholar 

  31. G. Perron, J. E. Desnoyers, and F. J. Millero,Can. J. Chem. 53, 1134 (1975).

    Google Scholar 

  32. M. Randall and G. Scott,J. Amer. Chem. Soc. 49, 647 (1927).

    Google Scholar 

  33. C. J. Downes and K. S. Pitzer,J. Solution Chem. 5, 389 (1976).

    Google Scholar 

  34. I. V. Olofsson, J. J. Spitzer, and L. G. Hepler,Can. J. Chem. 56, 1871 (1978).

    Google Scholar 

  35. S. Likke and L. A. Bromley,J. Chem. Engr. Data 18, 189 (1973).

    Google Scholar 

  36. H. P. Snipes, C. Manly, and D. D. Ensov,J. Chem. Engr. Data 20, 287 (1975).

    Google Scholar 

  37. R. E. Gibson and L. H. Adams,J. Amer. Chem. Soc. 55, 2679 (1933).

    Google Scholar 

  38. K. S. Pitzer and J. S. Murdzek,J. Solution Chem. 11, 409 (1982).

    Google Scholar 

  39. W. C. Schroeder, A. Gabriel, and E. P. Partridge,J. Amer. Chem. Soc. 57, 1539 (1935).

    Google Scholar 

  40. B. V. Gritsus, E. I. Akhumov, and L. P. Zhilina,J. Appl. Chem. USSR 44, 179 (1971).

    Google Scholar 

  41. H. H. Cudd and W. A. Felsing,J. Am. Chem. Soc. 64, 550 (1942).

    Google Scholar 

  42. W. R. Busing and H. A. Levy,Oak Ridge National Laboratory, Report ORNL-TM-271, (1962).

  43. K. S. Pitzer and G. Mayorga,J. Phys. Chem. 77, 2300 (1973).

    Google Scholar 

  44. B. A. Soldano and M. Meek,J. Chem. Soc., 4424 (1963).

  45. B. A. Soldano and P. B. Bien,J. Chem. Soc. A, 1825 (1966).

  46. W. L. Gardner, E. C. Jekel, and J. W. Cobble,J. Phys. Chem. 73, 2017 (1969).

    Google Scholar 

  47. D. Smith-Magowan and R. H. Wood,J. Chem. Thermodyn. 13, 1047 (1981).

    Google Scholar 

  48. H. F. Holmes, C. F. Baes, Jr., and R. E. Mesmer,J. Chem. Thermodyn. 10, 983 (1978).

    Google Scholar 

  49. W. T. Lindsey, Jr. and C. Liu,J. Phys. Chem. 75, 3723 (1971).

    Google Scholar 

  50. A. S. Quist, E. U. Franck, H. R. Jolley, and W. L. Marshall,J. Phys. Chem. 67, 2453 (1963).

    Google Scholar 

  51. H. C. Helgeson and D. H. Kirkham,Am. J. Sci. 276, 97 (1976).

    Google Scholar 

  52. K. S. Pitzer and G. Mayorga,J. Solution Chem. 3, 539 (1974).

    Google Scholar 

  53. L. Haar, J. S. Gallagher, and G. S. Kell,Proc. 8th Symp. Thermophys. Prop., Vol. 2, J. V. Sengers, ed. (Amer. Soc. Mech. Eng., New York, 1981), p. 298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences of the U.S. Department of Energy under contract DE-AC05-840R21400 with the Martin Marietta Energy Systems, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, H.F., Mesmer, R.E. Thermodynamics of aqueous solutions of the alkali metal sulfates. J Solution Chem 15, 495–517 (1986). https://doi.org/10.1007/BF00644892

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00644892

Key words

Navigation