Abstract
The available thermodynamic properties for aqueous solutions of each of the alkali metal sulfates have been combined and analyzed within the framework of the ion interaction model at temperatures up to 225°C. It was necessary to set α1 equal to 1.4kg1/2-mol−1/2 in order to obtain a satisfactory fit. The temperature dependence of the ion interaction parameters was given the functional form used by Rogers and Pitzer(1) in their study of Na2SO4(aq). With few exceptions, it was possible to reproduce the available thermodynamic data for aqueous solutions of the alkali metal to within the estimated experimental error. Thermodynamic results for Na2SO4(aq) appear to be adequate in this temperature range, but enthalpy and heat capacity data for the other alkali metal sulfate solutions are conspicuously lacking. Activity coefficients of these electrolytes decreased to less than 0.1 at moderate molalities at the higher temperatures, and their order changed with increasing temperature; two results which could be due to a combination of hydration and association effects.
Similar content being viewed by others
References
P. S. Z. Rogers and K. S. Pitzer,J. Phys. Chem. 85, 2886 (1981).
H. F. Holmes and R. E. Mesmer,J. Chel. Thermodyn., in press (1986).
J. E. Mayrath and R. H. Wood,J. Chem. Eng. Data 28, 56 (1983).
O. N. Bhatnagar and A. N. Campbell,Can. J. Chem. 59, 123 (1981).
O. N. Bhatnagar and A. N. Campbell,Can. J. Chem. 60, 1754 (1982).
K. S. Pitzer and L. Brewer, revised edition ofThermodynamics by G. N. Lewis and M. Randall, (McGraw-Hill, New York, N.Y., 1961).
L. F. Silvester and K. S. Pitzer,J. Phys. Chem. 81, 1822 (1977).
H. F. Holmes and R. E. Mesmer,J. Phys. Chem. 87, 1242 (1983).
K. S. Pitzer, J. C. Peiper, and R. H. Busey,J. Phys. Chem. Ref. Data 13, 1 (1984).
K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).
D. J. Bradley and K. S. Pitzer,J. Phys. Chem. 83, 1599 (1979).
G. Scatchard, B. Vonnegut, and D. W. Beaumont,J. Chem. Phys. 33, 1292 (1960).
R. A. Robinson, J. M. Wilson, and R. H. Stokes,J. Am. Chem. Soc. 63, 1011 (1941).
P. J. Thompson, D. E. Smith, and R. H. Wood,J. Chem. Engr. Data 19, 386 (1974).
W. Kangro and A. Groeneveld,Z. Phys. Chem. (Frankfurt)32, 110 (1962).
A. Indelli,Ric. Sci. 23, 2258 (1953).
E. Lange and H. Streeck,Z. Phys. Chem. (Leipzig)A157, 1 (1931).
J. A. Rard and D. G. Miller,J. Chem. Engr. Data 26, 33 (1981).
J. E. Mayrath and R. H. Wood,J. Chem. Engr. Data 28, 56 (1983).
C. S. Patterson, L. O. Gilpatrick, and B. A. Soldano,J. Chem. Soc. 2730 (1960).
B. A. Soldano and C. S. Patterson,J. Chem. Soc. 937 (1962).
C. W. Childs and R. F. Platford,Aust. J. Chem. 24, 2487 (1971).
R. J. Platford,J. Chem. Engr. Data 18, 215 (1973).
K. L. Hellams, C. S. Patterson, B. H. Prentice, III, and M. J. Taylor,J. Chem. Engr. Data 10, 323 (1965).
W. T. Humphries, C. F. Hohrt, and C. S. Patterson,J. Chem. Engr. Data 13, 327 (1968).
J. T. Moore, W. T. Humphries, and C. S. Patterson,J. Chem. Engr. Data 17, 180 (1972).
W. E. Wallace and A. L. Robinson,J. Amer. Chem. Soc. 63, 958 (1941).
W. H. Leung and F. J. Millero,J. Solution Chem. 4, 145 (1975).
H. S. Harned and J. C. Hecker,J. Am. Chem. Soc. 56, 650 (1934).
M. Randall and F. D. Rossini,J. Am. Chem. Soc. 51, 323 (1929).
G. Perron, J. E. Desnoyers, and F. J. Millero,Can. J. Chem. 53, 1134 (1975).
M. Randall and G. Scott,J. Amer. Chem. Soc. 49, 647 (1927).
C. J. Downes and K. S. Pitzer,J. Solution Chem. 5, 389 (1976).
I. V. Olofsson, J. J. Spitzer, and L. G. Hepler,Can. J. Chem. 56, 1871 (1978).
S. Likke and L. A. Bromley,J. Chem. Engr. Data 18, 189 (1973).
H. P. Snipes, C. Manly, and D. D. Ensov,J. Chem. Engr. Data 20, 287 (1975).
R. E. Gibson and L. H. Adams,J. Amer. Chem. Soc. 55, 2679 (1933).
K. S. Pitzer and J. S. Murdzek,J. Solution Chem. 11, 409 (1982).
W. C. Schroeder, A. Gabriel, and E. P. Partridge,J. Amer. Chem. Soc. 57, 1539 (1935).
B. V. Gritsus, E. I. Akhumov, and L. P. Zhilina,J. Appl. Chem. USSR 44, 179 (1971).
H. H. Cudd and W. A. Felsing,J. Am. Chem. Soc. 64, 550 (1942).
W. R. Busing and H. A. Levy,Oak Ridge National Laboratory, Report ORNL-TM-271, (1962).
K. S. Pitzer and G. Mayorga,J. Phys. Chem. 77, 2300 (1973).
B. A. Soldano and M. Meek,J. Chem. Soc., 4424 (1963).
B. A. Soldano and P. B. Bien,J. Chem. Soc. A, 1825 (1966).
W. L. Gardner, E. C. Jekel, and J. W. Cobble,J. Phys. Chem. 73, 2017 (1969).
D. Smith-Magowan and R. H. Wood,J. Chem. Thermodyn. 13, 1047 (1981).
H. F. Holmes, C. F. Baes, Jr., and R. E. Mesmer,J. Chem. Thermodyn. 10, 983 (1978).
W. T. Lindsey, Jr. and C. Liu,J. Phys. Chem. 75, 3723 (1971).
A. S. Quist, E. U. Franck, H. R. Jolley, and W. L. Marshall,J. Phys. Chem. 67, 2453 (1963).
H. C. Helgeson and D. H. Kirkham,Am. J. Sci. 276, 97 (1976).
K. S. Pitzer and G. Mayorga,J. Solution Chem. 3, 539 (1974).
L. Haar, J. S. Gallagher, and G. S. Kell,Proc. 8th Symp. Thermophys. Prop., Vol. 2, J. V. Sengers, ed. (Amer. Soc. Mech. Eng., New York, 1981), p. 298.
Author information
Authors and Affiliations
Additional information
Research sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences of the U.S. Department of Energy under contract DE-AC05-840R21400 with the Martin Marietta Energy Systems, Inc.
Rights and permissions
About this article
Cite this article
Holmes, H.F., Mesmer, R.E. Thermodynamics of aqueous solutions of the alkali metal sulfates. J Solution Chem 15, 495–517 (1986). https://doi.org/10.1007/BF00644892
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00644892