Advertisement

Journal of Solution Chemistry

, Volume 11, Issue 12, pp 831–856 | Cite as

An empirical potential function for the interaction between univalent ions in water

  • Yvonne Paterson
  • George Némethy
  • Harold A. Scheraga
Article

Abstract

A hydration-shell model has been developed for calculating the interaction energy between ions in water. The hydration shell around each ion contains a few tightly bound water molecules and a larger number of less tightly bound molecules. The energies of their interaction with the ion and the size of the hydration shell have been derived from published experimental data for ion-water clusters in the gas phase. An expression derived for the interaction energy of two univalent ions in water incorporates the following effects: a Lennard-Jones 6–12 interaction, a Coulomb interaction between the charges, the polarization of the hydration shells by a neighboring ion, and an energy term for the removal of water from the hydration shells when the hydration shells of two ions overlap. The ‘effective’ dielectric constant at small ion-ion distances is the only adjustable parameter. Computed interaction energies for aqueous solutions of twelve alkali halides match experimental values, derived from conductimetric measurements, with an average error of ±14%.

Key Words

Dielectric constant free energy hydration shell ion hydration ion-ion interaction ion-water interaction model for hydration pairing of ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. 1.
    G. Némethy and H. A. Scheraga,Quart. Rev. Biophys. 10, 239 (1977).Google Scholar
  2. 2.
    I. D. Kuntz, Jr. and W. Kauzmann,Adv. Protein Chem. 28, 239 (1974).Google Scholar
  3. 3.
    H. A. Scheraga,Ann. N. Y. Acad. Sci. 303, 2 (1977).Google Scholar
  4. 4.
    Y. Paterson, G. Némethy, and H. A. Scheraga,Ann. N. Y. Acad. Sci. 367, 132 (1981).Google Scholar
  5. 5.
    K. D. Gibson and H. A. Scheraga,Proc. Natl. Acad. Sci. USA,58, 420 (1967).Google Scholar
  6. 6.
    M. Gó, N. Gó, and H. A. Scheraga,J. Chem. Phys. 52, 2060 (1970).Google Scholar
  7. 7.
    H. A. Scheraga,Accts. Chem. Res. 12, 7 (1979).Google Scholar
  8. 8.
    A. J. Hopfinger,Macromolecules 4, 731 (1971).Google Scholar
  9. 9.
    Z. I. Hodes, G. Némethy, and H. A. Scheraga,Biopolymers 18, 1565 (1979).Google Scholar
  10. 10.
    Z. I. Hodes, G. Némethy, and H. A. Scheraga,Biopolymers 18, 1611 (1979).Google Scholar
  11. 11.
    I. D. Rae, S. J. Leach, E. Minasian, J. A. Smith, S. S. Zimmerman, J. A. Weigold, Z. I. Hodes, G. Némethy, R. W. Woody, and H. A. Scheraga,Int. J. Peptide and Protein Res. 17, 575 (1981).Google Scholar
  12. 12.
    H. L. Friedman, inModern Aspects of Electrochemistry, No. 6, B. E. Conway and J. O. M. Bockris, eds. (Plenum Press, New York, 1971), p. 1Google Scholar
  13. 13.
    T. H. Lilley, inElectrochemistry, Vol. V, H. R. Thirsk, ed. (The Chemical Society, London, 1975), p. 1.Google Scholar
  14. 14.
    H. C. Andersen, inModern Aspects of Electrochemistry, No. 11, B. E. Conway and J. O. M. Bockris, eds. (Plenum Press, New York, 1975), p. 1.Google Scholar
  15. 15.
    H. L. Friedman,Ann. Rev. Phys. Chem. 32, 179 (1981).Google Scholar
  16. 16.
    L. B. Magnusson,J. Chem. Phys. 39, 1953 (1963).Google Scholar
  17. 17.
    R. Triolo, J. R. Grigera, and L. Blum,J. Phys. Chem. 80, 1858 (1976).Google Scholar
  18. 18.
    J. D. Love and D. K. Ross,J. Chem. Soc. Faraday II 76, 575 (1980).Google Scholar
  19. 19.
    D. Levesque, J. J. Weis, and G. N. Patey,J. Chem. Phys. 72, 1887 (1980).Google Scholar
  20. 20.
    S. Levine and H. E. Wrigley,Disc. Faraday Soc. 24, 43 (1957).Google Scholar
  21. 21.
    S. Levine and G. M. Bell, inElectrolytes, B. Pesce, ed. (Pergamon Press, Oxford, 1962), p.77.Google Scholar
  22. 22.
    P. S. Ramanathan and H. L. Friedman,J. Chem. Phys. 54, 1086 (1971).Google Scholar
  23. 23.
    P. S. Ramanathan, C. V. Krishnan, and H. L. Friedman,J. Solution Chem. 1, 237 (1972).Google Scholar
  24. 24.
    H. L. Friedman, C. V. Krishnan, and C. Jolicoeur,Ann. N. Y. Acad. Sci. 204, 79 (1973).Google Scholar
  25. 25.
    H. L. Friedman, A. Smitherman, and R. DeSantis,J. Solution Chem. 2, 59 (1973).Google Scholar
  26. 26.
    R. W. Gurney,Ionic Processes in Solution (McGraw-Hill, New York, 1953).Google Scholar
  27. 27.
    H. S. Frank and W. Y. Wen,Disc. Faraday Soc. 24, 133 (1957).Google Scholar
  28. 28.
    G. Némethy and H. A. Scheraga,J. Chem. Phys. 36, 3382 (1962).Google Scholar
  29. 29.
    H. A. Scheraga,Ann. N. Y. Acad. Sci. 125, 253 (1965).Google Scholar
  30. 30.
    J. H. Griffith, Ph. D. Thesis, Cornell University, Ithaca, New York (1967);Dissert. Abstracts 28, 133-B (1967).Google Scholar
  31. 31.
    R. M. Lawrence and R. F. Kruh,J. Chem. Phys. 47, 4758 (1967).Google Scholar
  32. 32.
    W. Bol, G. J. A. Gerrits, and C. L. van Panthaleon van Eck,J. Appl. Cryst. 3, 486 (1970).Google Scholar
  33. 33.
    P. A. Kollman and I. D. Kuntz,J. Am. Chem. Soc. 96, 4766 (1974).Google Scholar
  34. 34.
    B. M. Rode, G. J. Reibnegger, and S. Fujiwara,J. Chem. Soc. Faraday Trans. II 76, 1268 (1980).Google Scholar
  35. 35.
    G. J. Reibnegger and B. M. Rode,Z. Naturforsch. 36a, 403 (1981).Google Scholar
  36. 36.
    G. I. Szász, W. O. Riede, and K. Heinzinger,Z. Naturforsch. 34a, 1083 (1979).Google Scholar
  37. 37.
    G. I. Szász and K. Heinzinger,Z. Naturforsch. 34a, 840 (1979).Google Scholar
  38. 38.
    P. Bopp, W. Dietz, and K. Heinzinger,Z. Naturforsch. 34a, 1424 (1979).Google Scholar
  39. 39.
    D. W. Wood, inWater, A Comprehensive Treatise, Vol. VI, F. Franks, ed. (Plenum Press, New York, 1979), p. 279.Google Scholar
  40. 40.
    W. K. Lee and E. W. Prohofsky,J. Chem. Phys. 75, 3040 (1981).Google Scholar
  41. 41.
    E. Clementi and R. Barsotti,Chem. Phys. Lett. 59, 21 (1978).Google Scholar
  42. 42.
    D. L. Beveridge, M. Mezei, P. K. Mehrotra, F. T. Marchese, V. Thirumalai, and G. Ravi-Shankar,Ann. N. Y. Acad. Sci. 367, 108 (1981).Google Scholar
  43. 43.
    M. Mezei and D. L. Beveridge,J. Chem. Phys. 74, 6902 (1981).Google Scholar
  44. 44.
    K. G. Breitschwerdt and H. Kistenmacher,Chem. Phys. Lett. 14, 288 (1972).Google Scholar
  45. 45.
    S. Goldman and R. G. Bates,J. Am. Chem. Soc. 94, 1476 (1972).Google Scholar
  46. 46.
    K. G. Spears and S. H. Kim,J. Phys. Chem. 80, 673 (1976).Google Scholar
  47. 47.
    M. H. Abraham and J. Liszi,J. Chem. Soc. Faraday Trans. I 74, 1604 (1978).Google Scholar
  48. 48.
    M. H. Abraham and J. Liszi,J. Chem. Soc. Faraday Trans. I 74, 2858 (1978).Google Scholar
  49. 49.
    B. T. Gowda and S. W. Benson,J. Am. Chem. Soc., submitted.Google Scholar
  50. 50.
    B. T. Gowda and S. W. Benson,J. Phys. Chem. 86, 1544 (1982).Google Scholar
  51. 51.
    M. H. Abraham and J. Liszi,J. Chem. Soc. Faraday Trans. I 76, 1219 (1980).Google Scholar
  52. 52.
    J. F. Hinton and E. S. Amis,Chem. Revs. 71, 627 (1971).Google Scholar
  53. 53.
    P. P. S. Saluja, inInternational Review of Science, Physical Chemistry, Series Two, Electrochemistry Vol. VI, J. O. M. Bockris, ed. (Butterworths, London, 1976), p. 1.Google Scholar
  54. 54.
    A. W. Castleman Jr.,Adv. Colloid Interface Sci. 10, 73 (1979).Google Scholar
  55. 55.
    A. K. Covington and K. E. Newman, inModern Aspects of Electrochemistry, No. 12, J. O. M. Bockris and B. E. Conway, Eds. (Plenum Press, New York, 1977), p. 41.Google Scholar
  56. 56.
    H. G. Hertz and C. Radle,Ber. Bunsenges. Phys. Chem. 77, 521 (1973).Google Scholar
  57. 57.
    A. Geiger and H. G. Hertz,J. Solution Chem. 5, 365 (1976).Google Scholar
  58. 58.
    H. Langer and H. G. Hertz,Ber. Bunsenges. Phys. Chem. 81, 478 (1977).Google Scholar
  59. 59.
    J. E. Enderby and G. W. Neilson, inWater, A Comprehensive Treatise Vol. 6, F. Franks, ed. (Plenum Press, New York, 1979), p. 1.Google Scholar
  60. 60.
    G. Pálinkás, T. Radnai, G. I. Szasz, and K. Heinzinger,J. Chem. Phys. 74, 3522 (1981).Google Scholar
  61. 61.
    N. Ohtomo and K. Arakawa,Bull. Chem. Soc. Japan 53, 1789 (1980).Google Scholar
  62. 62.
    P. Kebarle,Ann. Rev. Phys. Chem. 28, 445 (1977).Google Scholar
  63. 63.
    W. G. Richards, inWater, A Comprehensive Treatise Vol. 6, F. Franks, ed. (Plenum Press, New York, 1979), p. 123.Google Scholar
  64. 64.
    P. K. Bopp, K. Heinzinger, and G. Jancsó,Z. Naturforsch. 32a, 620 (1977).Google Scholar
  65. 65.
    G. Pálinkás, W. O. Riede, and K. Heinzinger,Z. Naturforsch. 32a, 1137 (1977).Google Scholar
  66. 66.
    H. P. Bennetto and J. J. Spitzer,J. Chem. Soc. Faraday Trans. I 74, 2385 (1978).Google Scholar
  67. 67.
    P. Schuster, inStructure of Water and Aqueous Solutions W. A. P. Luck, ed. (Verlag Chemie, Weinheim/Bergstr., 1974), p.141.Google Scholar
  68. 68.
    P. Schuster, inThe Hydrogen Bond, Vol. I, P. Schuster, G. Zundel, and C. Sandorfy, Eds. (North-Holland, Amsterdam, 1976), p. 25.Google Scholar
  69. 69.
    R. Janoschek, inThe Hydrogen Bond, Vol. I, P. Schuster, G. Zundel, and C. Sandorfy, Eds. (North-Holland, Amsterdam, 1976), p. 165.Google Scholar
  70. 70.
    S. N. Vinogradov, inMolecular Interactions, Vol. II, H. Ratajczak and W. J. Orville-Thomas, Eds. (J. Wiley and Sons, Chichester, 1980), p.179.Google Scholar
  71. 71.
    J. G. Kirkwood and F. H. Westheimer,J. Chem. Phys. 6, 506, 513 (1938);7, 437 (1939).Google Scholar
  72. 72.
    J. B. Hasted, D. M. Riston, and C. H. Collie,J. Chem. Phys. 16, 1 (1948).Google Scholar
  73. 73.
    F. Booth,J. Chem. Phys. 19, 1327, 1616 (1951).Google Scholar
  74. 74.
    E. Glueckauf, inChemical Physics of Ionic Solutions, B. E. Conway and R. G. Barradas, Eds. (John Wiley and Sons, New York, 1966), p. 67.Google Scholar
  75. 75.
    S. Levine and D. K. Rosenthal, inChemical Physics of Ionic Solutions, B. E. Conway and R. G. Barradas, Eds. (John Wiley and Sons, New York, 1966), p. 119.Google Scholar
  76. 76.
    L. G. Hepler,Austr. J. Chem. 17, 587 (1964).Google Scholar
  77. 77.
    D. Y. C. Chan, D. J. Mitchell, and B. W. Ninham,J. Chem. Phys. 70, 2946 (1979).Google Scholar
  78. 78.
    J. L. Lebowitz and E. H. Lieb,Phys. Rev. Lett. 22, 631 (1969).Google Scholar
  79. 79.
    L. R. Pratt and D. Chandler,J. Solution Chem. 9, 1 (1980).Google Scholar
  80. 80.
    L. R. Pratt and D. Chandler,J. Chem. Phys. 73, 3434 (1980).Google Scholar
  81. 81.
    J. E. B. Randles,Trans. Faraday Soc. 52, 1573 (1956).Google Scholar
  82. 82.
    R. M. Fuoss and C. A. Kraus,J. Am. Chem. Soc. 55, 476 (1933).Google Scholar
  83. 83.
    R. M. Fuoss,J. Solution Chem. 7, 771 (1978).Google Scholar
  84. 84.
    R. M. Fuoss,J. Phys. Chem. 82, 2427 (1978).Google Scholar
  85. 85.
    R. M. Fuoss.Proc. Nat. Acad. Sci. USA 75, 16 (1978).Google Scholar
  86. 86.
    R. M. Fuoss.Proc. Nat. Acad. Sci. USA 77, 34 (1980).Google Scholar
  87. 87.
    T. L. Hill,An Introduction to Statistical Thermodynamics (Addison-Wesley, Reading, 1960), p.342.Google Scholar
  88. 88.
    C. L. Kong,J. Chem. Phys. 59, 2464 (1973).Google Scholar
  89. 89.
    L. C. Pauling,The Nature of the Chemical Bond, Third Ed. (Cornell University Press, Ithaca, 1960), p. 514.Google Scholar
  90. 90.
    J. F. Chambers,J. Phys. Chem. 62, 1136 (1958).Google Scholar
  91. 91.
    J. E. Lind, Jr. and R. M. Fuoss,J. Phys. Chem. 66, 1727 (1962).Google Scholar
  92. 92.
    R. W. Kunze and R. M. Fuoss,J. Phys. Chem. 67, 914 (1963).Google Scholar
  93. 93.
    J. C. Justice and R. M. Fuoss,J. Phys. Chem. 67, 1707 (1963).Google Scholar
  94. 94.
    T. L. Fabry and R. M. Fuoss,J. Phys. Chem. 68, 974 (1964).Google Scholar
  95. 95.
    A. F. Reynolds, Ph. D. Dissertation, Yale University, 1966.Google Scholar
  96. 96.
    Y. C. Chiu and R. M. Fuoss,J. Phys. Chem. 72, 4123 (1968).Google Scholar
  97. 97.
    K. L. Hsia and R. M. Fuoss,J. Am. Chem. Soc. 90, 3055 (1968).Google Scholar
  98. 98.
    A. D. Pethybridge and D. J. Spiers,J. Chem. Soc. Faraday Trans. I 73, 768 (1977).Google Scholar
  99. 99.
    F. J. Millero, inWater and Aqueous Solutions, R. A. Horne, ed. (Wiley-Interscience, New York, 1972), p. 519.Google Scholar
  100. 100.
    F. M. Richards,J. Mol. Biol. 82, 1 (1974).Google Scholar
  101. 101.
    I. Dzidic and P. Kebarle,J. Phys. Chem. 74, 1466 (1970).Google Scholar
  102. 102.
    M. Arshadi, R. Yamadagni, and P. Kebarle,J. Phys. Chem. 74, 1475 (1970).Google Scholar
  103. 103.
    P. Kebarle, inIons and Ion Pairs in Organic Reactions, Vol. I, M. Szwarc, ed. (John Wiley and Sons, New York, 1972), p. 27.Google Scholar
  104. 104.
    P. Kebarle, inModern Aspects of Electrochemistry, No. 9, B. E. Conway and J. O. M. Bockris, Eds. (Plenum Press, New York, 1974), p. 1.Google Scholar
  105. 105.
    I. Z. Steinberg and H. A. Scheraga,J. Biol. Chem. 238, 172 (1963).Google Scholar
  106. 106.
    P. Kebarle, personal communication.Google Scholar
  107. 107.
    F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga,J. Phys. Chem. 79, 2361 (1975).Google Scholar
  108. 108.
    G. Némethy, W. J. Peer, and H. A. Scheraga,Ann. Rev. Biophys. Bioeng. 10, 459 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Yvonne Paterson
    • 1
  • George Némethy
    • 1
  • Harold A. Scheraga
    • 1
  1. 1.Baker Laboratory of ChemistryCornell UniversityIthaca

Personalised recommendations