Astrophysics and Space Science

, Volume 243, Issue 2, pp 393–400 | Cite as

On the origin of solar cycle periodicity

  • Attila Grandpierre


Recently, the origin of the solar cycle is considered to be rooted in the dynamics of the solar core (Grandpierre, 1996). The dynamic solar core model requires macroscopic flow and magnetic field as basic inputs. The macroscopic flow cannot be generated by the quasistatic solar structure and it has to reach a larger than critical size (Grandpierre, 1984) in order to survive dissipation. Therefore the flow must be generated by outer agents. The most significant outer agents to the Sun are the planets of the Solar System. These theoretical arguments are supported by observations showing that planetary tides follow a pattern correlating with the solar cycle in the last three and a half centuries (Wood, 1972; Desmoulins, 1995). Therefore the pulsating-ejecting solar core model gives a firm theoretical basis for the interpretation of these largely ignored observations. In this paper a new and simple calculation is presented which enlightens the planetary origin of the eleven-year period and gives a physical basis for a detailed modelling of the dynamo and the solar cycle.


Solar System Solar Cycle Theoretical Basis Simple Calculation Critical Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babcock, H.W.: 1961,Astrophys. J. 133, 572.Google Scholar
  2. Currie, R.G.: 1973,Astrophys. Space Sci. 20, 509.Google Scholar
  3. Desmoulins, J.-P. 1995,http://www.alpes — net. fr/~j_p_desm/sunspots.html. Google Scholar
  4. Dobrolyubov, A.I.: 1991,Appl. Mech. Rev. 44, 215.Google Scholar
  5. Dobrolyubov, A.I.: 1993, in: ‘Moon and Living Matter’, International Workshop, Kosice, Slovakia, September 23–25, 1993, Program and Abstracts, 19.Google Scholar
  6. Dodson, H.W. and Hedeman, E.R.: 1972, in: P.S. McIntosh and M. Dryer (eds.),Solar Activity Observations and Predictions, Boulder, NAO, 19.Google Scholar
  7. Dziembowski, W.A. and Goode, P.R.: 1993, in: T.M. Brown (ed.),GONG 1992: Seismic Investigations of the Sun and Stars, 225.Google Scholar
  8. Edmonds, F.B.: 1882,Nature 26, 292.Google Scholar
  9. Grandpierre, A.: 1984, in: A. Noels and M. Gabriel (eds.),Theoretical Problems in Stellar Stability and Oscillations, 48.Google Scholar
  10. Grandpierre, A.: 1990,Sol. Phys. 128, 3.Google Scholar
  11. Grandpierre, A.: 1996,Astron. Astrophys. 308, 119.Google Scholar
  12. Gribbin, J. and Plagemann, S.: 1977,Jupiter Effect Revisited, Fontana, Collins.Google Scholar
  13. Hantzsche, E.: 1978,Astron. Nachr. 299, 259.Google Scholar
  14. Novotny, O.: 1983, in: A.M. Soward (ed.),Stellar and Planetary Magnetism, Gordon and Breach, New York, 289.Google Scholar
  15. Okal, E. and Anderson, D.L.: 1975,Nature 253, 511.Google Scholar
  16. Olah, K., Hall, D.S. and Henry, G.W.: 1991,Astron. Astrophys. 251, 531.Google Scholar
  17. Opik, E.: 1972,Irish Astron. J. 10, 298.Google Scholar
  18. Phillips, K.J.H.: 1992,Guide to the Sun, Cambridge Univ. Press, 70.Google Scholar
  19. Seymour, P.A.H., Willmott, M. and Turner, A.: 1992,Vistas in Astron. 35, 39.Google Scholar
  20. Verma, S.D.: 1986, in: K.B. Bhatnagar (ed.),Space Dynamics and Celestial Mechanics, D. Reidel,Astrophys. Space Sci. Libr. 127, 143.Google Scholar
  21. Wood, K.D.: 1972,Nature 240, 91.Google Scholar
  22. Wood, R.M.: 1975,Nature 255, 312.Google Scholar
  23. Zeilik, M., De Blasi, C., Rhodes, M. and Budding, E.: 1988,Astrophys. J. 332, 293.Google Scholar
  24. Zeilik, M., Cox, D.A., De Blasi, C., Rhodes, M. and Budding, E.: 1989,Astrophys. J. 345, 991.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Attila Grandpierre
    • 1
  1. 1.Konkoly ObservatoryBudapestHungary

Personalised recommendations