Journal of Materials Science

, Volume 17, Issue 10, pp 3009–3016 | Cite as

Influence of heat treatment on the strength and fracture behaviour of Fe-12Cr-6Al ferritic stainless steel

  • Srinivas D. Sastry
  • P. K. Rohatgi
  • K. P. Abraham
  • Y. V. R. K. Prasad


The changes in the tensile properties and fracture mode brought about by heat treatment of Fe-12Cr-6Al ferritic stainless steel have been studied. A favourable combination of high strength and good ductility is obtained by heating the material at 1370 K for 2 h followed by a water quench. The high-temperature treatment results in carbide dissolution as well as an increase in the grain size. The mechanism of strengthening has been evaluated from the apparent activation energy (28 kJ mol−1) and is identified to be the unpinning of dislocations from the atmosphere of carbon atoms. As the heat-treatment temperature is increased, the fracture behaviour changes from ductile to brittle mode and this is related to the changes in grain size and friction stress.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Roy, F. A. Hagen andJ. M. Corwin, SAE Paper 740093 (1974).Google Scholar
  2. 2.
    P. M. Giles, H. Abrams andA. R. Marder, US Pat. 3 873 306 (1975).Google Scholar
  3. 3.
    I. Kvernes, M. Ouveira andP. Kofstad,Corrosion Sci. 17 (1977) 237.Google Scholar
  4. 4.
    F. A. Golightly, F. H. Stott andG. C. Wood,Oxid. Met. 10 (1976) 163.Google Scholar
  5. 5.
    S. Kunio,Japan Kokai, 76 38 217 (Cl.C22c 38/18) (1976).Google Scholar
  6. 6.
    R. Choubey, B. N. Das andB. R. Nijhawan, “Proceedings of Symposium on Metallurgical Substitutes for Ferrous and Non-ferrous Alloys” (National Metallurgical Laboratory, Jamshedpur, India, 1966) p. 133.Google Scholar
  7. 7.
    A. Roy andJ. M. Corwin,Met. Prog. 95 (1969) 70.Google Scholar
  8. 8.
    H. Thielsch,Welding J. 34 (1959) 225.Google Scholar
  9. 9.
    T. A. Pruger,Steel Horizon 13 (1951) 10.Google Scholar
  10. 10.
    J. J. Demo,Corrosion 27 (1971) 531.Google Scholar
  11. 11.
    G. J. Fisher andR. J. Maciag, “Handbook of Stainless Steels” (McGraw-Hill, New York, 1977) p. 1.Google Scholar
  12. 12.
    I. A. Fromson,Met. Trans. 5 (1974) 2257.Google Scholar
  13. 13.
    S. D. Sastry, P. K. Rohatgi, K. P. Abraham andY. V. R. K. Prasad,Met. Tech. 7 (1980) 393.Google Scholar
  14. 14.
    J. Friedel, “Dislocations” (Pergamon Press, London, 1964) p. 379.Google Scholar
  15. 15.
    J. G. McMullen, S. F. Reiter andD. G. Ebeling,Trans. ASM,46 (1954) 799.Google Scholar
  16. 16.
    “Metals Hand Book”, 8th edn, Vol. 8 (ASM, Metals Park, Ohio, 1973) p. 260.Google Scholar
  17. 17.
    R. W. Armstrong, I. Codd, R. M. Douthwaite andN. J. Fetch,Phil. Mag. 7 (1962) 45.Google Scholar
  18. 18.
    A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (Oxford University Press, New York, London, 1953).Google Scholar
  19. 19.
    I. Hitoshi andF. Yoshinori,Nippon Kinzoku Gakkaishi 39 (1915) 311.Google Scholar
  20. 20.
    F. H. Wohlbier (ed), “Diffusion and Defect Data Book”, Vol. 14 (Trans Tech Publications, Rockport, Massachussets, 1977) p. 42.Google Scholar
  21. 21.
    S. D. Sastry, P. K. Rohatgi, K. P. Abraham andY. V. R. K. Prasad,Scripta Metal. 13 (1979) 819.Google Scholar
  22. 22.
    J. R. Low, “Relation of Properties to Microstructure” (ASM, Metals Park, Ohio, 1954).Google Scholar
  23. 23.
    R. W. Armstrong,Met. Trans. 1 (1970) 1169.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • Srinivas D. Sastry
    • 1
  • P. K. Rohatgi
    • 1
  • K. P. Abraham
    • 1
  • Y. V. R. K. Prasad
    • 1
  1. 1.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations