Advertisement

Journal of Solution Chemistry

, Volume 15, Issue 8, pp 663–673 | Cite as

Conductance and ion association in dimethylsulfite

  • E. Plichta
  • M. Salomon
  • S. Slane
  • M. Uchiyama
Article

Abstract

The electrolytic conductances of LiClO4, LiAsF6, NaClO4 and the n-butylammonium salts Bu4NCl, Bu4NClO4, and Bu4NBPh4 (tetraphenylborate) have been determined in dimethylsufite at 25°C. Ion association constants calculated from these data are interpreted in terms of solvent-separated ion pairs (for LiClO4, LiAsF6, and NaClO4), and contact ion pairs (for the n-butyl-ammonium salts). Comparisons are made for analogous electrolytes in acetone, and in which all salts form contact ion pairs.

Key words

Conductivities Ion association 1∶1 electrolytes acetone dimethylsulfite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Salomon and E. J. Plichta,Electrochim. Acta 28, 1681 (1983);29, 731 (1984);30, 113 (1985).Google Scholar
  2. 2.
    M. Salomon,Electrochim. Acta 30, 1021 (1985).Google Scholar
  3. 3.
    Y. Harada, M. Salomon, and S. Petrucci,J. Phys. Chem. 89, 2006 (1985).Google Scholar
  4. 4.
    J. G. Janz and R. P. T. Tomkins,Nonaqueous Electrolytes Handbook Vol. 1, (Academic Press, New York, 1972).Google Scholar
  5. 5.
    Physical Chemistry of Organic Solvent Systems, A. K. Covington and T. Dickinson, ed., (Plenum Press, London, 1973).Google Scholar
  6. 6.
    R. M. Fuoss and K.-L. Hsia,Proc. Natl. Acad. Sci. USA 57, 1550 (1967).Google Scholar
  7. 7.
    R. Fernandez-Prini,Physical Chemistry of Organic Solvent Systems, A. K. Covington and T. Dickinson, eds., (Plenum Press, London, 1973), Chap. 5.Google Scholar
  8. 8.
    R. L. Kay,J. Am. Chem. Soc. 82, 2099 (1960).Google Scholar
  9. 9.
    H. V. Venkatasetty,Lithium Battery Technology (Wiley, New York, 1984), Chap. 2.Google Scholar
  10. 10.
    M. B. Reynolds and C. A. Kraus,J. Am. Chem. Soc. 70, 1709 (1948).Google Scholar
  11. 11.
    L. G. Savedoff,J. Am. Chem. Soc. 88, 664 (1966).Google Scholar
  12. 12.
    H. G. Brookes, M. C. B. Hotz, and A. H. Spong,J. Chem. Soc. (A) 2410 (1971).Google Scholar
  13. 13.
    R. M. Fuoss and E. Hirsch,J. Am. Chem. Soc. 82, 1013 (1960).Google Scholar
  14. 14.
    H. C. Brookes, M. C. B. Hotz, and A. H. Spong,J. Ct em. Soc. (A), 2415 (1971).Google Scholar
  15. 15.
    R. G. Baum and A. I. Popov,J. Solution Chem. 4, 441 (1975).Google Scholar
  16. 16.
    M. Salomon,J. Phys. Chem. 79, 429, 2000 (1975).Google Scholar
  17. 17.
    J. Barthel, H.-J. Gores, G. Schmeer, and R. Wachter,Topics in Current Chemistry, Vol. 3, (Springer-Verlag, Heidelberg, 1982), pp. 33–144.Google Scholar
  18. 18.
    Handbook of Chemistry and Physics, R. C. Weast, ed., (CRC Press, Cleveland, 1974).Google Scholar
  19. 19.
    Tables of Interatomic Distances, Chem. Soc. Spec. Publ. No. 11 (1958).Google Scholar
  20. 20.
    J. Barthel,Ber. Bunsenges. Phys. Chem. 83, 252 (1979).Google Scholar
  21. 21.
    J. Barthel, R. Wachter, and H.-J. Gores,Chem. Soc. Faraday Disc. 64, 285 (1978).Google Scholar
  22. 22.
    J. Barthel, R. Wachter, and H.-J. Gores,Modern Aspects of Electrochemistry, Vol. 13, B. E. Conway and J. O'M. Bockris, eds., (Plenum Press, New York, 1979), Chap. 1.Google Scholar
  23. 23.
    H. Faber, D. E. Irish, and S. Petrucci,J. Phys. Chem. 87, 3515 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • E. Plichta
    • 1
  • M. Salomon
    • 1
  • S. Slane
    • 1
  • M. Uchiyama
    • 1
  1. 1.Power Sources LaboratoryU.S. Army Electronics Technology and Devices LaboratoryFort Monmouth

Personalised recommendations