Journal of Solution Chemistry

, Volume 9, Issue 4, pp 293–301 | Cite as

Solvent effects on the dissociation of weak acids of three charge types in water/N-methylacetamide media

  • Richard A. Butler
  • Carmen A. Vega
  • Roger G. Bates
Article

Abstract

In order to elecidate the role of charge type on the change of dissociation constant with increasing polarity of the solvent medium, the pK values and associated thermodynamic quantities for an uncharged acid (acetic acid), a cationic acid (protonated tris(hydroxymethyl)aminomethane), and two ampholytes (MOPS and Tricine) were determined in mixtures of water andN-methylacetamide (NMA). Electromotive-force measurements of cells without liquid junction containing hydrogen electrodes and silver-silver bromide electrodes were used to determine the pK at nine temperatures from 5 to 45°C. The solvent compositions varied from pure water to a mixture containing a mole fraction of NMA of 0.25 (57.5 mass % NMA). The solvent effects are compared with similar data for water/methanol solvents of decreasing polarity. They reflect both the reduction in interionic energy accompanying the elevation in dielectric constant and also the greater protophilic character of NMA as compared with methanol.

Key words

Acetic acid acidic dissociation ampholyte dissociation dissociation constants ionization MOPS NMA-water solvents solutesolvent effects tris(hydroxymethyl)aminomethane Tricine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Bates, J. S. Falcone, Jr., and A. Y. W. Ho,Anal. Chem. 46, 2004 (1974).Google Scholar
  2. 2.
    Y. Bokra and R. G. Bates,Anal. Chem. 47, 1110 (1975).Google Scholar
  3. 3.
    J.-C. Hallé, R. Harivel, and R. Gaboriaud,Can. J. Chem. 52, 1774 (1974).Google Scholar
  4. 4.
    D. S. Reid and C. A. Vincent,J. Electroanal. Chem. 18, 427 (1968).Google Scholar
  5. 5.
    R. A. Butler and R. G. Bates, inThermodynamic Behavior of Electrolytes in Mixed Solvents. II, W. F. Furter, ed. (Adv. in Chem. Ser. 177, American Chemical Society, Washington, 1979) Chap. 16.Google Scholar
  6. 6.
    H. S. Harned and R. W. Ehlers,J. Am., Chem. Soc. 54, 1350 (1932);55, 652 (1933).Google Scholar
  7. 7.
    R. G. Bates and H. B. Hetzer,J. Phys. Chem. 65 667 (1961).Google Scholar
  8. 8.
    S. P. Datta, A. K. Grzybowski, and B. A. Weston,J. Chem. Soc. London, 792 (1963).Google Scholar
  9. 9.
    M. Sankar and R. G. Bates,Anal. Chem. 50, 1922 (1978).Google Scholar
  10. 10.
    R. N. Roy, R. A. Robinson, and R. G. Bates,J. Am. Chem. Soc. 95, 8231 (1973).Google Scholar
  11. 11.
    D. J. G. Ives and P. G. N. Moseley,J. Chem., Soc. Faraday Trans. I 72, 1132 (1976).Google Scholar
  12. 12.
    M. Paabo, R. A. Robinson, and R. G. Bates,J. Am. Chem. Soc. 87, 415 (1965).Google Scholar
  13. 13.
    M. Woodhead, M. Paabo, R. A. Robinson, and R. G. Bates,J. Res. Natl. Bur. Stand. 69A, 263 (1965).Google Scholar
  14. 14.
    R. G. Bates, R. N. Roy, and R. A. Robinson,J. Solution Chem. 3, 905 (1974).Google Scholar
  15. 15.
    E. S. Etz, R. A. Robinson, and R. G. Bates,J. Solution Chem. 1, 507 (1972).Google Scholar
  16. 16.
    M. Paabo, R. G. Bates, and R. A. Robinson,J. Phys. Chem. 70, 247 (1966).Google Scholar
  17. 17.
    R. Reynaud,Bull. Soc. Chim. Fr. 3945 (1968).Google Scholar
  18. 18.
    V. Gutmann,The Donor-Acceptor Approach to Molecular Interactions (Plenum Press, New York, 1978).Google Scholar
  19. 19.
    R. Gaboriaud,Ann. Chim. (Paris), Ser. 14 2, 201 (1967).Google Scholar
  20. 20.
    A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 684, 1536 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Richard A. Butler
    • 1
  • Carmen A. Vega
    • 1
  • Roger G. Bates
    • 1
  1. 1.Department of ChemistryUniversity of FloridaGainesville

Personalised recommendations