Advertisement

Astrophysics and Space Science

, Volume 135, Issue 1, pp 111–118 | Cite as

A unified presentation of the Voigt functions

  • H. M. Srivastava
  • Elizabeth A. Miller
Article

Abstract

This paper aims at presenting a unified study of the Voigt functionsK(x,y) andL(x,y) which play a rather important role in several diverse fields of physics such as astrophysical spectroscopy and the theory of neutron reactions. Explicit expressions for these functions are given in terms of relatively more familiar special functions of one and two variables; indeed, each of these representations will naturally lead to various other needed properties of the Voigt functions.

Keywords

Spectroscopy Special Function Explicit Expression Diverse Field Unify Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, B. H. and Nicholls, R. W.: 1972,Emission, Absorption and Transfer of Radiation in Heated Atmospheres, Pergamon Press, New York.Google Scholar
  2. Buschman, R. G.: 1982,Pure Appl. Math. Sci. 16, 23.Google Scholar
  3. Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G.: 1953,Higher Transcendental Functions, Vol. I, McGraw-Hill, New York.Google Scholar
  4. Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G.: 1954,Tables of Integral Transforms, Vol. I, McGraw-Hill, New York.Google Scholar
  5. Exton, H.: 1981,J. Phys. A: Math. Gen. 14, L75.Google Scholar
  6. Fettis, H. E.: 1983,J. Phys. A: Math. Gen. 16, 663.Google Scholar
  7. Fettis, H. E., Caslin, J. C., and Cramer, K. R.: 1972,An Improved Tabulation of the Plasma Dispersion Function, Parts I and II, ARL 72-0056 and 72-0057, Air Force Systems Command, Wright-Patterson AFB, Ohio.Google Scholar
  8. Fried, B. D. and Conte, S. D.: 1961,The Plasma Dispersion Function. Academic Press, New York.Google Scholar
  9. Gradshteyn, I. S. and Ryzhik, I. M.: 1980,Table of Integrals, Series, and Products, Academic Press, New York.Google Scholar
  10. Haubold, H. J. and John, R. W.: 1979,Astrophys. Space Sci. 65, 477.Google Scholar
  11. Katriel, J.: 1982,J. Phys. A: Math. Gen. 15, 709.Google Scholar
  12. Reiche, F.: 1913,Ber. Deutsch. Phys. Ges. 15, 3.Google Scholar
  13. Srivastava, H. M. and Joshi, C. M.: 1969,Proc. Cambridge Phil. Soc. 65, 471.Google Scholar
  14. Srivastava, H. M. and Karlsson, P. W.: 1985,Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley, New York.Google Scholar
  15. Srivastava, H. M. and Kashyap, B. R. K.: 1982,Special Functions in Queuing Theory and Related Stochastic Processes, Academic Press, New York.Google Scholar
  16. Srivastava, H. M. and Manocha, H. L.: 1984,A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley, New York.Google Scholar
  17. Srivastava, H. M. and Panda, R.: 1976,J. Reine Angew. Math. 283/284, 265.Google Scholar
  18. Srivastava, H. M., Gupta, K. C., and Goyal, S. P.: 1982,The H-Functions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • H. M. Srivastava
    • 1
  • Elizabeth A. Miller
    • 2
  1. 1.Department of MathematicsUniversity of VictoriaVictoriaCanada
  2. 2.Department of Mathematics and PhysicsLester B. Pearson College of the PacificVictoriaCanada

Personalised recommendations