Skip to main content
Log in

Mutual diffusion coefficients of aqueous MnCl2 and CdCl2, and osmotic coefficients of aqueous CdCl2 at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Volume-fixed mutual diffusion coefficients have been measured for aqueous MnCl2 and CdCl2 solutions from 0.004 to 4.93–5.00 mol-dm−3 (M) at 25°C. Diffusion coefficients for MnCl2 decrease to a minimum, rise to a maximum, and then decrease rapidly; such behavior is typical for strong electrolytes. In contrast CdCl2 diffusion coefficients decrease continuously with concentration; similar behavior is known for certain other associated electrolytes. Since thermodynamic diffusion coefficients for both salts are qualitatively similar, diffusion differences may be primarily due to thermodynamic rather than mobility factors. Isopiestic data were measured for CdCl2 from 1.79 to 7.29 mol- (kg H2O)−1, and critically compared to other isopiestic and emf data for CdCl2. Higher quality emf data are completely consistent with isopiestic data. Recommended smoothed values of activity coefficients, osmotic coefficients, water activities, and activity derivatives are given for CdCl2 at 25°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Miller,J. Phys. Chem. 70, 2639 (1966);71, 616 (1967);Faraday Discuss. Chem. Soc. 64, 295 (1978).

    Google Scholar 

  2. R. Mills and H. G. Hertz,J. Chem. Soc., Faraday Trans. I 78, 3287 (1982).

    Google Scholar 

  3. J. A. Rard and D. G. Miller,J. Solution Chem. 8, 701 (1979);12, 413 (1983).

    Google Scholar 

  4. J. A. Rard and D. G. Miller,J. Chem. Eng. Data 25, 211 (1980).

    Google Scholar 

  5. J. A. Rard and D. G. Miller,J. Chem. Soc., Faraday Trans. I 78, 887 (1982).

    Google Scholar 

  6. D. G. Miller, J. A. Rard, L. B. Eppstein, and J. G. Albright,J. Phys. Chem. 88, 5739 (1984).

    Google Scholar 

  7. V. Vitagliano and P. A. Lyons,J. Am. Chem. Soc. 78, 1549 (1956).

    Google Scholar 

  8. P. A. Lyons and J. F. Riley,J. Am. Chem. Soc. 76, 5216 (1954).

    Google Scholar 

  9. L. J. Gosting,J. Am. Chem. Soc. 72, 4418 (1950).

    Google Scholar 

  10. Z. Libuś and H. Tialowska,J. Solution Chem. 4, 1011 (1975).

    Google Scholar 

  11. R. A. Robinson and R. H. Stokes,Trans. Faraday Soc. 41 752 (1945).

    Google Scholar 

  12. C. J. Downes,J. Chem. Eng. Data 18, 412 1973).

    Google Scholar 

  13. H. Weingärtner, K. J. Müller, H. G. Hertz, A. V. J. Edge, and R. Mills,J. Phys. Chem. 88, 2173 (1984).

    Google Scholar 

  14. A. Agnew and R. Paterson,J. Chem. Soc., Faraday Trans. I 74, 2896 (1978).

    Google Scholar 

  15. P. Van Rysselberghe, S. W. Grinnell, and J. M. Carlson,J. Am. Chem. Soc. 59, 336 (1937).

    Google Scholar 

  16. P. J. Reilly and R. H. Stokes,Aust. J. Chem. 23, 1397 (1970).

    Google Scholar 

  17. R. J. Latham and N. A. Hampson,Cadmium, inEncyclopedia of Electrochemistry of the Elements Volume 1, A. J. Bard, ed., (Marcel Dekker, New York, 1973), Chap. 4, pp. 155–233.

    Google Scholar 

  18. A. J. McQuillan,J. Chem. Soc., Faraday Trans. I 70, 1558 (1974).

    Google Scholar 

  19. J. A. Rard and D. G. Miller, unpublished data.

  20. P. J. Reilly and R. H. Stokes,Aust. J. Chem. 24, 1361 (1971).

    Google Scholar 

  21. J. G. Firth and H. J. V. TyrrellJ. Chem. Soc., 2042 (1962).

  22. P. N. Snowdon and J. C. R. Turner,Trans. Faraday Soc. 56, 1812 (1960).

    Google Scholar 

  23. Ya. P. Gokhshtein,Zh. Fiz. Khim. 28, 1417 (1954).

    Google Scholar 

  24. Y. El-Tawil,Chem. Petro-Chem. J. 12, 3 (1981).

    Google Scholar 

  25. J. A. Rard,J. Chem. Eng. Data,29, 443 (1984).

    Google Scholar 

  26. J. A. Rard and D. G. Miller,J. Chem. Eng. Data 29, 151 (1984).

    Google Scholar 

  27. K. H. Gayer and R. M. Haas,J. Phys. Chem. 64, 1764 (1960).

    Google Scholar 

  28. K. Indaratna, A. J. McQuillan, and R. A. Matheson, unpublished results.

  29. L. S. Lilich and Yu. S. Varshavsky,J. Gen. Chem. U.S.S.R. (Engl. trans.) 26, 337 (1956).

    Google Scholar 

  30. G. A. Ivashina, T. S. Kuratova, M. O. Tereshkevich, and V. G. Korovina,Russ. J. Phys. Chem. (Engl. trans.) 49, 1185 (1975).

    Google Scholar 

  31. F. A. Cotton and G. Wilkinson,Advanced Inorganic Chemistry, 2nd edn., (Wiley Interscience, New York, 1966).

    Google Scholar 

  32. J. G. Albright and D. G. Miller,J. Phys. Chem. 76, 1853 (1972);84, 1400 (1980).

    Google Scholar 

  33. J. M. Creeth,J. Am. Chem. Soc. 77, 6428 (1955).

    Google Scholar 

  34. J. G. Albright and D. G. Miller,J. Phys. Chem. 79, 2061 (1975).

    Google Scholar 

  35. F. H. Spedding, H. O. Weber, V. W. Saeger, H. H. Petheram, J. A. Rard, and A. Habenschuss,J. Chem. Eng. Data 21, 341 (1976).

    Google Scholar 

  36. W. G. Horsch,J. Am. Chem. Soc. 41, 1787 (1919).

    Google Scholar 

  37. F. H. Getman,J. Phys. Chem. 32, 91 (1928).

    Google Scholar 

  38. W. F. Linke,Solubilities: Inorganic and Metal-Organic Compounds Volume 1, (McGregor and Werner, Washington, D. C., 1958), p. 711.

    Google Scholar 

  39. V. K. Fillippov, M. A. Yakimov, and C. T. Tam,Russ. J. Inorg. Chem. (Engl. trans.) 18, 1200 (1973).

    Google Scholar 

  40. D. G. Miller, J. G. Albright, and J. A. Rard, manuscript in preparation.

  41. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd edn. revised, (Butterworths, London, 1965).

    Google Scholar 

  42. T. L. Broadwater and D. F. Evans,J. Solution Chem. 3 757 (1974).

    Google Scholar 

  43. S. Petrucci, P. Hemmes, and M. Battistini,J. Am. Chem. Soc. 89, 5552 (1967).

    Google Scholar 

  44. R. A. Matheson,J. Phys. Chem. 66, 439 (1962).

    Google Scholar 

  45. M. Spiro, ‘Conductance and Transference Determination,’ inPhysical Methods of Chemistry, 5th edn., B. W. Rossiter and J. F. Hamilton, eds., (Wiley-Interscience, New York, in press), Chap. 8.

  46. S. Katayama,J. Solution Chem. 5, 241, (1976).

    Google Scholar 

  47. J. G. Albright and D. G. Miller,J. Solution Chem. 4, 809 (1975).

    Google Scholar 

  48. J. A. Rard and D. G. Miller,J. Solution Chem. 8, 755 (1979).

    Google Scholar 

  49. D. G. Miller, J. A. Rard, L. B. Eppstein, and R. A. Robinson,J. Solution Chem. 9, 467 (1980).

    Google Scholar 

  50. R. Paterson, J. Anderson, S. S. Anderson, and Lutfullah,J. Chem. Soc., Faraday Trans. I 73, 1773 (1977).

    Google Scholar 

  51. D. G. Miller, ‘Electrolytes: Transport Properties and Non-equilibrium Thermodynamics’, inProceedings Second Australian Thermodynamics Conference, (Royal Australia Chem. Inst., Melbourne, 1981).

    Google Scholar 

  52. R. A. Robinson,Trans. Faraday Soc. 36, 1135 (1940).

    Google Scholar 

  53. K. Pan and W.-Y. Ni,J. Chinese Chem. Soc. (Taipei) 15, 69 (1968).

    Google Scholar 

  54. W. W. Lucasse,J. Am. Chem. Soc. 51, 2597 (1929).

    Google Scholar 

  55. M. Quintin,J. Chim. Phys. 33, 111 (1936).

    Google Scholar 

  56. H. S. Harned and M. E. Fitzgerald,J. Am. Chem. Soc. 58, 2624 (1936).

    Google Scholar 

  57. W. B. Treumann and L. M. Ferris,J. Am. Chem. Soc. 80, 5048 (1958).

    Google Scholar 

  58. J. D. Hefley and E. S. Amis,J. Electrochem. Soc. 112, 336 (1965).

    Google Scholar 

  59. C. Gómez Herrera, F. Tallada, and L. Brú,Anales Fis. Quim. (Madrid) 40, 297 (1944).

    Google Scholar 

  60. W. W. Lucasse,J. Am. Chem. Soc. 51, 2605 (1929).

    Google Scholar 

  61. K. Indaratna and A. J. McQuillan, manuscript in preparation.

  62. P. Longhi, T. Mussini, S. Rondinini, and B. Sala,J. Chem. Thermodyn. 11, 359 (1979).

    Google Scholar 

  63. A. Brester,Rec. Trav. Chim. de Pays-Bas 46, 328 (1927).

    Google Scholar 

  64. L. Brüll,Gazz. Chim. Ital. 64, 615 (1934).

    Google Scholar 

  65. W. J. Hamer and Y.-C. Wu,J. Phys. Chem. Ref. Data 1, 1047 (1972).

    Google Scholar 

  66. K. S. Pitzer inActivity Coefficients in Electrolyte Solutions, Volume 1, R. M. Pytkowicz, ed., (CRC Press, Boca Raton, FL, 1979), Chap. 7.

    Google Scholar 

  67. R. N. Goldberg,J. Res. Nat. Bur. Stand. 89, 251 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed under the auspices of the Office of Basic Energy Sciences (Geosciences) of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rard, J.A., Miller, D.G. Mutual diffusion coefficients of aqueous MnCl2 and CdCl2, and osmotic coefficients of aqueous CdCl2 at 25°C. J Solution Chem 14, 271–299 (1985). https://doi.org/10.1007/BF00644459

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00644459

Key Words

Navigation