Skip to main content
Log in

Solubilities of hydrogen and deuterium gases in water and their isotope fractionation factor

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solubilities of deuterium gas in water were measured at 5° intervals from 278 to 303°K with an overall precision of about 0.4%. Thermodynamic functions for the solution process were calculated for deuterium gas and compared with the corresponding quantities for hydrogen gas based on the reported data of Crozier and Yamamoto. Henry's law constantsk, obtained at different temperaturesT, were fitted to an equation of the form

$$R ln ({1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}) = A + {B \mathord{\left/ {\vphantom {B {T + }}} \right. \kern-\nulldelimiterspace} {T + }}C ln T + DT$$

Isotope fractionation factors α for the D2/H2 system were obtained with careful error estimates. Compared at the same temperature, D2 gas is more soluble in water than H2 gas, showing a “normal” isotope effect, and the value of α decreases from 1.086 (±0.005) at 278°K to 1.065 (±0.006) at 303°K. The large isotope effect may be attributed, at least partly, to the difference in the zero-point energies between H2 and D2 molecules when they execute oscillatory motion in a solvent cage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. W. Winkler,Chem. Ber. 36, 1408 (1901).

    Google Scholar 

  2. J. Horiuti,Sci. Pap. Inst. Phys. Chem. Res. (Jpn.) 17, 125 (1931).

    Google Scholar 

  3. H. S. Frank and M. W. Evans,J. Chem. Phys. 13, 507 (1945).

    Google Scholar 

  4. T. J. Morrison and F. Billet,J. Chem. Soc., 3819 (1952).

  5. D. M. Himmelblau,J. Phys. Chem. 63, 1803 (1959).

    Google Scholar 

  6. K. W. Miller and J. H. Hildebrand,J. Am. Chem. Soc. 90, 3001 (1968).

    Google Scholar 

  7. A. Ben-Naim,J. Chem. Phys. 57, 5257 (1972).

    Google Scholar 

  8. A. Ben-Naim and M. Yaacobi,J. Phys. Chem. 78, 170 (1974).

    Google Scholar 

  9. B. B. Benson and D. J. Krause,J. Chem. Phys. 64, 689 (1976).

    Google Scholar 

  10. E. Wilhelm, R. Battino, and R. J. Wilcock,Chem. Rev. 77, 219 (1977).

    Google Scholar 

  11. L. W. Winkler,Chem. Ber. 24, 89 (1891).

    Google Scholar 

  12. T. E. Crozier and S. Yamamoto,J. Chem. Eng. Data 19, 242 (1974).

    Google Scholar 

  13. E. A. Symons and E. Buncel,Can. J. Chem. 51, 1673 (1973).

    Google Scholar 

  14. H. C. Urey,J. Chem. Soc., 562 (1947).

  15. J. Bigeleisen and M. G. Mayer,J. Chem. Phys. 15, 261 (1947).

    Google Scholar 

  16. J. Bigeleisen,J. Chem. Phys. 34, 1485 (1961).

    Google Scholar 

  17. J. Bigeleisen,J. Chem. Phys. 39, 769 (1963).

    Google Scholar 

  18. M. Wolfsberg,Ann. Rev. Phys. Chem. 20, 449 (1969).

    Google Scholar 

  19. J. Bigeleisen, M. W. Lee, and F. Mandel,Ann. Rev. Phys. Chem. 24, 407 (1973).

    Google Scholar 

  20. G. Jancso and W. A. Van Hook,Chem. Rev. 74, 689 (1974).

    Google Scholar 

  21. C. E. Klots and B. B. Benson,J. Chem. Phys. 38, 890 (1963).

    Google Scholar 

  22. R. Weiss,Science 168, 247 (1969).

    Google Scholar 

  23. P. Kroopnick and H. Craig,Science 175, 54 (1972).

    Google Scholar 

  24. L. Waldmann,Naturwissenschaften 31, 205 (1943).

    Google Scholar 

  25. P. Baertschi and W. Kuhn,Helv. Chim. Acta 40, 1084 (1957).

    Google Scholar 

  26. A. Ben-Naim and S. Baer,Trans. Faraday Soc. 59, 2735 (1963).

    Google Scholar 

  27. W.-Y. Wen and J. H. Hung,J. Phys. Chem. 74, 170 (1970).

    Google Scholar 

  28. R. Battino, M. Banzhof, M. Bogan, and E. Wilhelm,Anal. Chem. 43, 806 (1971).

    Google Scholar 

  29. J. H. Rolston, J. den Hartog, and J. P. Butler,J. Phys. Chem. 80, 1064 (1976).

    Google Scholar 

  30. R. D. Bardo and M. Wolfsberg,J. Phys. Chem. 80, 1068 (1976).

    Google Scholar 

  31. Y. Singh and K. K. Datta,J. Chem. Phys. 53, 1184 (1970).

    Google Scholar 

  32. D. W. Marquardt,J. Soc. Ind. Appl. Math. 11, 431 (1963).

    Google Scholar 

  33. E. C. W. Clarke and D. N. Glew,Trans. Faraday Soc. 62, 539 (1966).

    Google Scholar 

  34. E. Douglass,J. Phys. Chem. 68, 169 (1964).

    Google Scholar 

  35. E. Douglass,J. Phys. Chem. 69, 1608 (1965).

    Google Scholar 

  36. M. W. Cook, D. N. Hanson, and B. J. Alder,J. Chem. Phys. 26, 748 (1957).

    Google Scholar 

  37. B. B. Benson, private communication (1977).

  38. J. C. Vogel, P. M. Grootes, and W. G. Mook,Z. Phys. 230, 225 (1970).

    Google Scholar 

  39. P. M. Grootes, W. G. Mook, and J. C. Vogel,Z. Phys. 221, 257 (1969).

    Google Scholar 

  40. J. Bigeleisen,J. Chem. Phys. Physicochim. Biol. 60, 35 (1963).

    Google Scholar 

  41. M. J. Stern, W. A. Van Hook, and M. Wolfsberg,J. Chem. Phys. 39, 3179 (1963).

    Google Scholar 

  42. W. A. Van Hook and J. T. Phillips,J. Phys. Chem. 70, 1515 (1966).

    Google Scholar 

  43. M. Wolfsberg,J. Chem. Phys. 50, 1484 (1969).

    Google Scholar 

  44. W. A. Van Hook,J. Chem. Phys. 46, 1907 (1967).

    Google Scholar 

  45. H. Wolff and A. Höpfner,Ber. Bunsenges. Phys. Chem. 71, 461 (1967).

    Google Scholar 

  46. H. Wolff and R. Württ,J. Phys. Chem. 74, 1600 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muccitelli, J., Wen, WY. Solubilities of hydrogen and deuterium gases in water and their isotope fractionation factor. J Solution Chem 7, 257–267 (1978). https://doi.org/10.1007/BF00644273

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00644273

Key words

Navigation