Astrophysics and Space Science

, Volume 126, Issue 1, pp 133–141 | Cite as

Exact solutions in Jordan-Brans-Dicke homogeneous universes I

  • P. Chauvet
  • E. Guzmán


Spatially homogeneous, anisotropic Bianchi types I-II-III-V-VIo-VIh and Kantowski-Sachs (KS) are shown to have perfect fluid solutions in Jordan-Brans-Dicke (JDB) cosmological theory. All the solutions obey the relation ɛψ=aη2+bη+c, where ɛ and ψ are the re-scaled energy density and the re-scaled scalar field, respectively, and η is a ‘time parameter’. This relation is derived in Bianchi type-I and gives rise to the general solution for this model universe. In the remaining Bianchi types this same relation is shown to hold as well; and new solution, some of which do not possess locally rotational symmetry, are obtained.


Energy Density Exact Solution General Solution Scalar Field Time Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belinskii, V. A. and Khalatnikov, I. M.: 1972,Zh. Eksp. Teor. Fiz. 63, 1121 (Soviet Phys. JETP 36, 591).Google Scholar
  2. Chauvet, P.: 1983,Astrophys. Space Sci. 90, 51.Google Scholar
  3. Chauvet, P.: 1984,Astrophys. Space Sci. 106, 207.Google Scholar
  4. Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E.: 1980,Exact Solutions of Einstein's Field Equations, VEB Deutscher Verlag der Wissenschaften, Berlin, D.D.R.Google Scholar
  5. Lorentz-Petzold, D.: 1983,Astrophys. Space Sci. 98, 101.Google Scholar
  6. Lorentz-Petzold, D.: 1984,Astrophys. Space Sci. 98, 281.Google Scholar
  7. Ruban, V. A. and Finkelstein, A. M.: 1972,Nuovo Cimento Letters 5, 289.Google Scholar
  8. Ruban, V. A. and Finkelstein, A. M.: 1975,Gen. Rel. Grav. 6, 601.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • P. Chauvet
    • 1
  • E. Guzmán
    • 1
  1. 1.Departamento de FísicaUniversidad Autónoma MetropolitanaUnidad IztapalapaMexico

Personalised recommendations