Astrophysics and Space Science

, Volume 51, Issue 2, pp 409–427

# Rotational dynamics of a deformable medium

• V. S. Geroyannis
• J. N. Tokis
Article

## Abstract

The aim of the present investigation has been to derive from the fundamental Cauchy's first law of continuum mechanics the explicit form of the Eulerian general equation which governs the three-axial generalized rotation about the centre of mass of a self-gravitating deformable finite material continuum, viscolinear (i.e., Newtonian) or not, consisting of compressible fluid of arbitrary viscosity, in an external field of force. The generalized rotation is a superposition of the so-called rigid-body (i.e., time dependent only) rotation of the continuum plus a nonrigidbody (i.e., position-time dependent) rotation of its configurations.

In Section 2, which follows brief introductory remarks outlining the problem, we develop a mathematical theory which describes the whole phenomenon in terms of two rotation tensors corresponding, respectively, to the rigid-body and nonrigid-body rotation modes. In Section 3, we derive the differmation vectors of velocity and acceleration. The equations we have obtained are a very general version of Navier Stokes' equations, which were not given in previous investigations. In Section 4, we perform integration of the left-hand side of Cauchy's first law, cross-multiplied by the position vector, without any restriction. In Section 6, integration of the right-hand side of the same law, cross-multiplied by the position vector, is carried out, by taking account of actually simplifying assumptions stated in Section 5. All the integral terms occurring in both sides are expressed explicitly by quantities evaluated in terms of components of properly defined moments.

Finally, in Section 7, the system of the general Eulerian equations is set up; and some easy modifications are given, which describe nicely physical models of special interest; while the concluding Section 8 contains a general discussion of the results.

### Keywords

Explicit Form Eulerian Equation General Equation External Field Position Vector

## Preview

### References

1. Chadwick, P.: 1976,Continuum Mechanics, George Allen and Unwin, London, p. 36.Google Scholar
2. Chandrasekhar, S.: 1969,Ellipsoidal Figures of Equilibrium, Yale Univ. Press, New Haven and London, pp. 15–37.Google Scholar
3. Darwin, G. H.: 1879,Phil. Trans. Roy. Soc. London 170, 1, 447, 539 (Reprinted inScientific Papers 2).Google Scholar
4. Darwin, G. H.: 1880,Phil. Trans. Roy. Soc. London 171, 713 (Reprinted inScientific Papers 2).Google Scholar
5. Darwin, G. H.: 1908,Scientific Papers 2, Cambridge Univ. Press.Google Scholar
6. Darwin, G. H.: 1911,Scientific Papers 4, Cambridge Univ. Press, pp. 185–263.Google Scholar
7. Gerstenkorn, H.: 1955,Z. Astrophys. 36, 245.Google Scholar
8. Goldreich, P. and Peale, S. J.: 1968,Ann. Rev. Astron. Astrophys. 6, 321.Google Scholar
9. Jeffreys, H.: 1952,The Earth, Cambridge Univ. Press.Google Scholar
10. Kaula, W. M.: 1963,J. Geophys. Res. 68, 4959, 4967.Google Scholar
11. Kaula, W. M.: 1964,Rev. Geophys. 2, 661.Google Scholar
12. Kopal, Z.: 1959,Close Binary Systems, Chapman-Hall and J. Wiley, London and New York, pp. 1–104.Google Scholar
13. Kopal, Z.: 1968a,Astrophys. Space Sci. 1, 74.Google Scholar
14. Kopal, Z.: 1968b,Astrophys. Space Sci. 1, 179.Google Scholar
15. Kopal, Z.: 1968c,Astrophys. Space Sci. 1, 184.Google Scholar
16. Kopal, Z.: 1968e,Astrophys. Space Sci. 2, 48.Google Scholar
17. Kopal, Z.: 1968f,Icarus 9, 231.Google Scholar
18. Kopal, Z.: 1969a,Astrophys. Space Sci. 4, 330.Google Scholar
19. Kopal, Z.: 1969b,Astrophys. Space Sci. 4, 427.Google Scholar
20. Kopal, Z.: 1972a,Astrophys. Space Sci. 16, 3.Google Scholar
21. Kopal, Z.: 1972b,Astrophys. Space Sci. 16, 347.Google Scholar
22. Liouville, J.: 1858,J. Math. 3, 1–25.Google Scholar
23. MacDonald, G. J. F.: 1964,Rev. Geophys. 2, 467.Google Scholar
24. Melchior, P.: 1966,The Earth Tides, Pergamon Press, New York.Google Scholar
25. Munk, W. and MacDonald, G. J. F.: 1960,The Rotation of the Earth, a Geophysical Discussion, Cambridge Univ. Press.Google Scholar
26. Poincaré, H.: 1910,Bull. Astron. 27, 321–356.Google Scholar
27. Thomson, W.: 1879,Proc. Roy. Soc. Edinburgh, 92.Google Scholar
28. Tokis, J. N.: 1974a,Astrophys. Space Sci. 26, 447.Google Scholar
29. Tokis, J. N.: 1974b,Astrophys. Space Sci. 26, 477.Google Scholar
30. Tokis, J. N.: 1974c,The Moon 10, 337.Google Scholar
31. Truesdell, C. and Toupin, R.: 1960, ‘The Classical Field Theories’, inHandbuch der Physik (ed. by S. Flügge), Vol. III/1, pp. 490, 704.Google Scholar