Advertisement

Earth, Moon, and Planets

, Volume 66, Issue 2, pp 173–188 | Cite as

A stochastic model of the Earth-Moon tidal evolution accounting for cyclic variations of resonant properties of the ocean: an asymptotic solution

  • B. A. Kagan
  • N. B. Maslova
Article

Abstract

A stochastic model of the Earth-Moon tidal evolution taking into account fluctuating effects of the continental drift is described. The above effects caused by alternation of periods of consolidation and disintegration of continents are specified as a combination of cyclic variations and superimposed random perturbations of the ocean eigenoscillation spectrum. The solution is found with use of one-mode and multi-mode resonance approximations. In other words, we assume that the ocean response to the Moon's forcing is due to one or several resonant modes predominant over all other ocean eigenoscillations. For the multi-mode resonance approximation, the model ensures a proper time scale of the Earth-Moon tidal evolution and qualitative agreement of predicted changes in the number of solar days and synodic months per year with paleontological and sedimentological data. Moreover, it makes possible fitting of model estimates of tidal energy dissipation to those derived from global paleotide models for different periods of the Phanerozoic.

Keywords

Energy Dissipation Stochastic Model Model Estimate Asymptotic Solution Qualitative Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brosche, P. and Hövel W.: 1982, ‘Tidal Friction for Times around the Present’, in: P. Brosche and J. Sündermann (eds.),Tidal Friction and the Earth's Rotation, II, Springer Verlag, Berlin, pp. 175–189.Google Scholar
  2. Brosche, P. and Sündermann J.: 1984, ‘Tidal Friction and Dynamics of Earth-Moon-System’, in Landolt-Börnstein (ed.),Neue Serie, B.2. Geophysik der festen Erde, des Mondes und der Planeten, Springer Verlag, Berlin, pp. S.288–310.Google Scholar
  3. Darwin, G. H.: 1879, ‘On the Precession of a Viscous Spheroid, and on the Remote History of the Earth’,Phil. Trans. R. Soc., London,170, 447–538.Google Scholar
  4. Darwin, G. H.: 1880, ‘On the Secular Changes in the Elements of the Orbit of a Satellite Revolving about a Tidally Distorted Planet’,Phil. Trans. R. Soc., London,171, 713–891.Google Scholar
  5. Gerstenkorn, H.: 1955, ‘Über Gezeitenreibung bein Zweikörperproblem’,Z. Astrophys. 36, S.245–274.Google Scholar
  6. Gotlib, V. Yu. and Kagan B. A.: 1985, ‘A Reconstruction of the Tides in the Paleoocean: Results of a Numerical Simulation’,Dt. Hydrogr. Zs. 38, S.43–67.Google Scholar
  7. Gotlib, V. Yu. and Kagan B. A.: 1988, ‘Evolution of the Global Ocean Tides in the Cenozoic’,Okeanologiya 28, 17–24.Google Scholar
  8. Hansen, K. S.: 1982, ‘Secular Effects of Oceanic Tidal Dissipation on the Moon's Orbit and the Earth's Rotation’,Rev. Geophys. Space Phys. 20, 457–480.Google Scholar
  9. Munk, W. H.: 1968, ‘Once Again-Tidal Friction’,Quart. J. Roy. Astron. Soc. 9, 352–375.Google Scholar
  10. Ooe, M.: 1989, ‘Effects of Configuration and Bathymetry of the Ocean on the Tidal Dissipation of the Earth's Rotation’,J. Phys. Earth 37, 345–355.Google Scholar
  11. Piper, J. D. A.: 1982, ‘Movements of the Continental Crust and Lithosphere-Astenosphere Systems in Precambrian Times’, in: P. Brosche and J. Sündermann (eds.),Tidal Friction and the Earth's Rotation, II, Springer Verlag, Berlin, pp. 253–293.Google Scholar
  12. Platzman, G. W.: 1984, ‘Planetary Energy Balance for Tidal Dissipation’,Rev. Geophys. Space Phys. 22, 73–84.Google Scholar
  13. Scrutton, C. T.: 1978, ‘Periodic Growth Features in Fossil Organisms and the Length of the Day and Month’, in: P. Brosche and J. Sündermann (eds.),Tidal Friction and the Earth's Rotation, I, Springer Verlag, Berlin, pp. 253–292.Google Scholar
  14. Webb, D. J.: 1980, ‘Tides and Tidal Friction in a Hmispherical Ocean Centered at the Equator’,Geophys. J. Roy. Astron. Soc. 61, 573–600.Google Scholar
  15. Webb, D. J.: 1982a, ‘Tides and the Evolution of the Earth-Moon System’,Geophys. J. Roy. Astron. Soc. 70, 261–271.Google Scholar
  16. Webb, D. J.: 1982b, ‘On the Reduction in Tidal Dissipation Produced by Increases in the Earth's Rotation Rate and its Effect on the Long-Term History of the Moon's Orbit’, in: P. Brosche and J. Sündermann (eds.),Tidal Friction and the Earth's Rotation, Springer-Verlag, Berlin, pp. 210–221.Google Scholar
  17. Williams, G. E.: 1989, ‘Tidal Rhythmites: Geochronometers for the Ancient Earth-Moon System’,Episodes 12, 162–171.Google Scholar

Copyright information

© KluwerAcademic Publishers 1994

Authors and Affiliations

  • B. A. Kagan
    • 1
  • N. B. Maslova
    • 1
  1. 1.St. Petersburg Branch, P. P. Shirshov Institute of OceanologySt. PetersburgRussia

Personalised recommendations