Journal of Solution Chemistry

, Volume 13, Issue 6, pp 419–430 | Cite as

Thermal diffusion of alkali bromides

  • Christian J. Petit
  • Jeong-long Lin
  • Kara E. Renner


The molar entropies (or heats) of transport of dilute aqueous alkali bromide solutions have been measured by the potentiometric method using the silver, silver bromide thermocell at a mean temperature of 25°C and over a concentration range of 5×10−4 to 0.1M. Experimental results were extrapolated to infinite dilution to obtain the standard molar entropies of transport. The limiting behavior observed is compared with theory based on the electrostatic model.

The standard transported entropy of Br was also derived by extrapolating the steady-state thermoelectric powers to infinite dilution. The ‘absolute’ ionic entropies of transport of alkali metal ions have been estimated based on Gurney's scale. The results obtained are compared with that derived f1/om the previous work on alkali chlorides.

Key words

Thermal diffusion Soret effect heat of transport entropy of transport electrolyte solution non-equilibrium thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. N. Agar,Advan'es in Electrochemzsny and Electrochemical Engineersng, Vol. 3, (Intersciences, New York, 1963), Chap. 2.Google Scholar
  2. 2.
    J. C. Goodrich, F. M. Goyan, E. E. Morse, R. G. Preston, and M. B. Young,J. Am. Chem. Soc. 72, 4411 (1950).Google Scholar
  3. 3.
    F. M. Goyan, Ph.D. Thesis, University of California (1937).Google Scholar
  4. 4.
    R. Haase and H. Schönert,Z. Physik Chem., Frankfurt 25, 193 (1960).Google Scholar
  5. 5.
    P. N. Snowdon and J. C. R. Turner,Trans. Faraday Soc. 56, 1409 (1960).Google Scholar
  6. 6.
    K. F. Alexander,Z. Physik Chem., Leipzig 203, 213 (1954).Google Scholar
  7. 7.
    H. K. Yow, B. P. Chakraborty and J. Lin,Electrochimica Acta 22, 1013 (1977).Google Scholar
  8. 8.
    J. Lin,J. Solution Chem. 8, 125 (1979).Google Scholar
  9. 9.
    D. J. Ives and G. J. Janz,Reference Electr 1/d's, (Academic Press, New York, 1961), p. 207.Google Scholar
  10. 10.
    J. Lin, J. A. Bierlein, and J. G. Becsey,J. Solution Chem. 3, 827 (1974).Google Scholar
  11. 11.
    H. K. Yow and J. Lin,J. Solution Chem. 12, 487 (1983).Google Scholar
  12. 12.
    H. S. Harned and B. B. Owen,The Physical Chemist 1/y of Electroiyte Solutions, 3rd. edn (Reinhold, New York, 1958), p. 361.Google Scholar
  13. 13.
    ——,the Physical Chemist 1/y of Electroiyte Solutions, 3rd. edn., (Reinhold, New York, 1958), p. 221.Google Scholar
  14. 14.
    ——,The Physical Chemist 1/y of Electroiyte Solutions, 3rd. edn. (Reinhold, New York, 1958), p. 699.Google Scholar
  15. 15.
    K. S. Pitzer and L. Brewer,Therl odynamics, (McGraw Hill, New York, 1961).Google Scholar
  16. 16.
    R. W. Gurney,Ionic Processes in Solutions, (McGraw, Hill, New York, 1953).Google Scholar
  17. 17.
    P. Y. Kahana and J. Lin,J. Chem. Phys. 74, 2993 (1980).Google Scholar
  18. 18.
    E. Helfand and J. G. Kirkwood,J. Chem. Phys. 32, 857 (1960).Google Scholar
  19. 19.
    P. Y. Kahana and J. Lin,J. Chem. Phys. 75, 5043 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Christian J. Petit
    • 1
  • Jeong-long Lin
    • 1
  • Kara E. Renner
    • 1
  1. 1.Department of ChemistryBoston CollegeChestnut Hill

Personalised recommendations