Skip to main content
Log in

Electron capture in carbon dwarf supernovae

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The rates of electron capture on heavier elements under the extreme conditions predicted for dwarf star supernovae have been computed, incorporating modifications that seem to be indicated by present experimental results. An estimate of the maximum possible value of such rates is also given. The distribution of nuclei in nuclear statistical equilibrium has been calculated for the range of expected supernovae conditions, including the effects of the temperature dependence of nuclear partition functions. These nuclide abundance distributions are then used to compute nuclear equilibrium thermodynamic properties. The effects of the electron capture on such equilibrium matter are discussed. The results of supernova numerical hydrodynamics incorporating the computed equilibrium properties and the influence of electron capture are presented. In the context of the ‘carbon detonation’ supernova model, the dwarf central density required to assure core collapse to a neutron star configuration is found to be slightly higher than that obtained by Bruenn (1972) with the electron capture rates of Hansen (1966).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnett, W. D.: 1966,Can. J. Phys. 44, 2553.

    Google Scholar 

  • Arnett, W. D.: 1969,Astrophys. Space Sci. 5, 180.

    Google Scholar 

  • Arnett, W. D., Truran, J. W., and Woosley, S. E.: 1971,Astrophys. J. 165, 87.

    Google Scholar 

  • Bahcall, J. N.: 1964,Astrophys. J. 139, 318.

    Google Scholar 

  • Barkat, Z., Buchler, J.-R., and Wheeler, J. C.: 1972a,Astrophys. J. 171, 651.

    Google Scholar 

  • Barkat, Z., Buchler, J.-R., and Wheeler, J. C.: 1972b,Astrophys. J. 173, 195.

    Google Scholar 

  • Beaudet, G., Petrosian, V., and Salpeter, E. E.: 1967,Astrophys. J. 150, 979.

    Google Scholar 

  • Bruenn, S. W.: 1972,Astrophys. J. Suppl. 24, 283.

    Google Scholar 

  • Buchler, J.-R., Wheeler, J. C., and Barkat, Z.: 1971,Astrophys. J. 167, 465.

    Google Scholar 

  • Buchler, J.-R., Wheeler, J. C., and Barkat, Z.: 1972,Astrophys. J. 172, 713.

    Google Scholar 

  • Buchler, J.-R., Wheeler, J. C., and Barkat, Z.: 1973, ‘Off-Center Detonation in Evolved Stellar Cores’, preprint.

  • Cameron, A. G. W. and Elkin, R. M.: 1965,Can. J. Phys. 43, 1288.

    Google Scholar 

  • Clifford, F. E. and Tayler, R. J.: 1964,Mem. Roy. Astron. Soc. 69, 21.

    Google Scholar 

  • Colgate, S. A.: 1971,Astrophys. J. 163, 221.

    Google Scholar 

  • Colgate, S. A. and White, R. H.: 1966,Astrophys J. 143, 626.

    Google Scholar 

  • Couch, R. G. and Arnett, W. D.: 1973a,Astrophys. J. Letters 180, L101.

    Google Scholar 

  • Couch, R. G. and Arnett, W. D.: 1973b, ‘Degenerate, Carbon Burning’, preprint of paper presented at Conference on Explosive Nucleosynthesis, Univ. Texas, Austin.

  • Courant, R. and Friedrichs, K. O.: 1948,Supersonic Flow and Schock Waves, Interscience Publishers Inc., New York.

    Google Scholar 

  • Cox, J. P. and Giuli, R. T.: 1968,Principles of Stellar Structure, Gordon and Breach, New York.

    Google Scholar 

  • Duke, C. L., Hansen, P. G., Neilson, D. B., and Rudstam, G.: 1970,Nucl. Phys. A151, 609.

    Google Scholar 

  • Fowler, W. A. and Hoyle, F.: 1965,Nucleosynthesis in Massive Stars and Supernova, University of Chicago Press, Chicago.

    Google Scholar 

  • Gilbert, A. and Cameron, A. G. W.: 1965,Can. J. Phys. 43, 1446.

    Google Scholar 

  • Gunn, J. E. and Ostriker, J. P.: 1970,Astrophys. J. 160, 979.

    Google Scholar 

  • Hansen, C. J.: 1966, Thesis, Yale University.

  • Johansen, K. H., Nielsen, K. B., and Rudstam, G.: 1973,Nucl. Phys. A203, 481.

    Google Scholar 

  • Krylov, V. I.: 1962,Approximate Calculation of Integrals, Stroud., A. H. (trans.), The Macmillan Co., New York.

    Google Scholar 

  • Kippenhahn, R. and Thomas, H. C.: 1964,Z. Astrophys. 60, 19.

    Google Scholar 

  • LeBlanc, J. M. and Wilson, J. R.: 1970,Astrophys. J. 161, 541.

    Google Scholar 

  • Lundstrom, E. A. and Oppenheim, A. K.: 1969,Proc. Roy. Soc. 310, 463.

    Google Scholar 

  • Mazurek, T. J.: 1973a, Thesis, Yeshiva University.

  • Mazurek, T. J.: 1973b, ‘Binary Helium Dwarf Supernovae’,Astrophys. Space Sci. 23, 365.

    Google Scholar 

  • Nakada, Y. and Sugimoto, D.: 1972,Publ. Astron. Soc. Japan 24, 139.

    Google Scholar 

  • Nuclear Data Sheets, 1971,B5, ii.

  • Nuclear Data Tables, 1971,9.

  • Ostriker, J. R. and Gunn, J. E.: 1971,Astrophys. J. Letters 164, L95.

    Google Scholar 

  • Paczyński, B.: 1970,Acta Astron. 20, 47.

    Google Scholar 

  • Paczyński, B.: 1972,Astrophys. Letters 11, 53.

    Google Scholar 

  • Paczyński, B. and Ziołkowski, J.: 1968,Acta Astron. 18, 255.

    Google Scholar 

  • Salpeter, E. E. and Van Horn, H. M.: 1969,Astrophys. J. 155, 183.

    Google Scholar 

  • Sokolik, A. S.: 1963,Self Ignition, Flame and Detonation in Gases, Kaner, N. (trans.), Office of Technical Services, U.S. Dept. of Commerce, Washington 25, D.C.

    Google Scholar 

  • Truran, J. W. and Cameron, A. G. W.: 1971,Astrophys. Space Sci. 14, 179.

    Google Scholar 

  • Wheeler, J. C. and Hansen, C. J.: 1971,Astrophys. Space Sci. 11, 373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazurek, T.J., Truran, J.W. & Cameron, A.G.W. Electron capture in carbon dwarf supernovae. Astrophys Space Sci 27, 261–291 (1974). https://doi.org/10.1007/BF00643877

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00643877

Keywords

Navigation