Astrophysics and Space Science

, Volume 139, Issue 1, pp 1–4 | Cite as

Transformation of geocentric to geodetic coordinates without approximations

  • Kazimierz M. Borkowski


An exact and relatively simple analytical transform of the rectangular coordinates to the geodetic coordinates is presented. It does not involve any approximation and the accuracy of practical calculations depends exclusively on the round-off errors. The algorithm is based on one solution to the quartic equation in tg(45°-ψ/2), where ψ is the parametric (or eccentric) latitude.


Practical Calculation Quartic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baranov, V. N., Bojko, E. G., Krasnorylov, I. I., Mashimov, M. M., Plokhov, Yu. V., Urmaev, M. S., and Yashikin, S. N.: 1986,Space Geodesy, Nedra, Moscow, p. 27 (in Russian).Google Scholar
  2. Hedgley, D. R.: 1976, NASA Techn. Report R-458.Google Scholar
  3. Heikkinen, M.: 1982,Z. Vermess. 107, 207 (in German).Google Scholar
  4. Heiskanen, W. A. and Moritz, H.: 1967,Physical Geodesy, W. H. Freeman and Co., San Francisco, p. 181.Google Scholar
  5. Hibowicki, R. (ed.): 1981,Higher Geodesy and Geodetic Astronomy, PWN, Warzawa p. 273 (in Polish).Google Scholar
  6. Izotov, A. A. (ed.): 1974,Fundamentals of Satellite Geodesy, Nedra, Moscow, p. 34 (in Russian).Google Scholar
  7. Korn, G. A. and Korn, T. M.: 1961,Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York p. 24.Google Scholar
  8. Lange, K. R.: 1974,Astrophysical Formulae, Springer-Verlag, Berlin p. 497.Google Scholar
  9. Paul, M. K.: 1973,Bull. Géod. 108, 135.Google Scholar
  10. Pick, M.: 1985,Studia Geophys. Geod. 29, 112.Google Scholar
  11. Taff, L. G.: 1985,Celestial Mechanics, A Computational Guide for the Practitioner, J. Wiley and Sons, New York, Ch. 3.Google Scholar
  12. Urmaev, M. S.: 1981,Orbital Methods of Space Geodesy, Nedra, Moscow, p. 14 (in Russian).Google Scholar
  13. Vaníćek, P. and Krakiwsky, E. J.: 1982,Geodesy: The Concepts, North Holland Publ. Co., Amsterdam, p. 324.Google Scholar
  14. Woolard, E. W. and Clemence, G. M.: 1966,Spherical Astronomy, Academic Press, New York Ch. 3.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Kazimierz M. Borkowski
    • 1
  1. 1.Toruń Radio Astronomy ObservatoryNicolaus Copernicus UniversityToruńPoland

Personalised recommendations