Advertisement

Ventilatory, circulatory, endocrine, and renal effects of almitrine infusion in man: a contribution to high altitude physiology

  • E. A. Koller
  • M. Schopen
  • M. Keller
  • R. E. Lang
  • M. B. Vallotton
Article

Summary

Diuresis at altitude was thought to be the result of chemoreceptor stimulation leading to a reduction of cardiac volume overload. This hypothesis was tested in ten young, healthy subjects by infusion of almitrine (0.5 mg · kg−1 body mass within 30 min) assuming analogous sites of action, i.e. arterial chemoreceptors and pulmonary vessels, for almitrine as for hypoxic hypoxia. The results show that almitrine increases ventilation, heart rate, systolic blood pressure, central venous pressure and natriuresis, but fails to increase significantly atrial natriuretic peptide plasma concentration and diuresis. It is concluded: (1) that almitrine has similar sites of action as hypoxic hypoxia at about 5000 m, (2) that natriuresis during arterial chemoreceptor stimulation might reduce cardiac volume overload, (3) that the volume excretion hypothesis, in particular the pathways from the cardiac volume overload to the water diuresis, need, for an understanding of the hypoxia-induced diuresis, further direct investigations at altitude.

Key words

Almitrine Altitude Atrial natriuretic peptide Arginine vasopressin Diuresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bärtsch P, Shaw S, Franciolli M, Weidmann P (1988) Elevated atrial natriuretic peptide in acute mountain sickness and high altitude pulmonary oedema — a contributing factor to the development of oedema. J Appl Physiol 65:1929–1937Google Scholar
  2. Bee D, Gill GW, Emery CJ, Salmon GL, Evans TW, Barer GR (1983) Action of almitrine on the pulmonary vasculature in ferrets and rats. Bull Eur Physiopathol Respir 19:539–545Google Scholar
  3. Boutellier U, Koller EA (1981) Propranolol and the respiratory, circulatory, and ECG responses to high altitude. Eur J Appl Physiol 46:105–109Google Scholar
  4. Boutellier U, Kündig TH, Gomez U, Pietsch P, Koller EA (1987) Respiratory phase detection and delay determination for breath-by-breath analysis. J Appl Physiol 62:837–843Google Scholar
  5. Dürr JA, Vallotton MB, Simon CA, Krähenbühl B (1978) Non-invasive method for measuring central venous pressure. Lancet I:586–587Google Scholar
  6. Genest J, Cantin M (1986) Regulation of body fluid volume: the atrial natriuretic factor. NIPS 1:3–5Google Scholar
  7. Gluskowski J, Gorecka D, Hawrylkiewicz I, Zielinski J (1984) Acute effects of almitrine infusion on pulmonary haemodynamics in normal man. Bull Eur Physiopathol Respir 20:313–317Google Scholar
  8. Honig A (1983) Role of the arterial chemoreceptors in the reflex control of renal function and body fluid volumes in acute arterial hypoxia. In: Acker H, O'Regan RD (eds) Physiology of the Peripheral Arterial Chemoreceptors. Elsevier, Amsterdam, pp 395–429Google Scholar
  9. Honig A, Wedler B, Zingler C, Ledderhos C, Schmidt M (1985) Kidney function during arterial chemoreceptor stimulation. III. Long-lasting inhibition of renal tubular sodium reabsorption due to pharmacologic stimulation of the peripheral arterial chemoreceptor with almitrine bismesylate. Biomed Biochem Acta 44:1659–1672Google Scholar
  10. Koller EA, Boutellier U, Ziegler W (1983) Zum Einfluß der Katecholamine und von Propranolol auf die akute Höhenanpassung des Menschen. Schweiz Med Wochenschr 113:1989–1999Google Scholar
  11. Koller EA, Lang RE, Vallotton MB (1987) Diuresis, a result of arterial chemoreceptor stimulation. Biomed Biochem Acta 12:1051–1054Google Scholar
  12. Koller EA, Drechsel S, Hess T, Macherel P, Boutellier U (1988) Effects of atropine and propranolol on the respiratory, circulatory, and ECG responses to high altitude in man. Eur J Appl Physiol 57:163–172Google Scholar
  13. Labrid C (1982) Approche du méchanism d'action du bismésylate d'almitrine. Bull Eur Physiolpathol Respir 18 (Suppl 4):299–306Google Scholar
  14. Laciga P, Koller EA (1976) Respiratory, circulatory, and ECG changes during acute exposure to high altitude. J Appl Physiol 41:159–167Google Scholar
  15. Lang RE, Thölken H, Ganten D, Luft FC, Ruskoaho H, Unger T (1985) Atrial natriuretic factor — a circulating hormone stimulated by volume loading. Nature 314:264–266Google Scholar
  16. La Rochelle FT, North WG, Stern P (1980) A new extraction of arginine vasopressin from blood: the use of octadecasilyl-silica. Pflügers Arch 387:79–81Google Scholar
  17. Lockhart A, Mazmanian G (1982) Effets du bismésylate d'almitrine sur la circulation pulmonaire et les rapports ventilation-perfusion. Bull Eur Physiopathol Respir 18 [Suppl 4]:285–295Google Scholar
  18. Melot C, Naeije R, Rothschild T, Mertens P, Mols P, Hallemans R (1983) Improvement in ventilation perfusion matching by almitrine in COPD. Chest 83:528–533Google Scholar
  19. Menninger RP (1985) Current concept of volume receptor regulation of vasopressin release. Fed Proc 44:55–58Google Scholar
  20. Ogihara T, Shima J, Hara H, Kumahara Y, Kangawa K, Matsuo H (1986) Changes in human plasma atrial natriuretic polypeptide concentration in normal subjects during passive leg raising and whole-body tilting. Clin Sci 71:147–150Google Scholar
  21. O'Regan RG, Majcherczyk S, Przybyszewski A (1983) Effects of almitrine bismesylate on activities recorded from nerves supplying the carotid bifurcation in the cat. Eur J Respir Dis [Suppl 126] 64:197–202Google Scholar
  22. Pietsch P (1984) Das rechnerunterstützte Atmungsanalysesystem des Physiologischen Instituts Zürich. Thesis, University of ZurichGoogle Scholar
  23. Rigaud D, Dubois F, Ansquer JC, Brambilla C, Godard J, Paramelle B (1982) Modifications des rapports ventilationperfusion dans les bronchopneumopathies chroniques obstructives après l'administration de bismésylate d'almitrine. Bull Eur Physiopathol Respir [Suppl 4] 18:339–350Google Scholar
  24. Roumy M, Leitner LM (1981) Stimulant effect of almitrine on the rabbit carotid chemoreceptor afferent activity. Bull Eur Physiopathol Respir 17:255–259Google Scholar
  25. Saetersdal T, Jodalen H, Lie R, Rotevatn S, Engedal H, Myklebust R (1979) Effects of isoproterenol on the dense core and perigranular membrane of atrial specific granules. Cell Tissue Res 119:213–224Google Scholar
  26. Somers VK, Anderson JV, Conway J, Sleight P, Bloom SR (1986) Atrial natriuretic peptide is released by dynamic exercise in man. Horm Metabol Res 18:871–872Google Scholar
  27. Standaert DG, Cechetto DF, Needleman P, Saper CB (1987) Inhibition of the firing of vasopressin neurons by atriopeptin. Nature 329:151–153Google Scholar
  28. Tweney J (1987) Almitrine bismesylate: current status. Bull Eur Physiopathol Respir [Suppl 11] 23:153s–163s.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • E. A. Koller
    • 1
  • M. Schopen
  • M. Keller
    • 1
  • R. E. Lang
    • 2
  • M. B. Vallotton
    • 3
  1. 1.Department of PhysiologyUniversity of ZurichZurichSwitzerland
  2. 2.Department of PharmacologyUniversity of HeidelbergFederal Republic of Germany
  3. 3.Division of EndocrinologyUniversity HospitalGenevaSwitzerland

Personalised recommendations